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LIQUEFIED GASES
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7.8, LIQUID LEVEL INDICATORS

Perhaps the simplest among widely used level indicators is one based on
the observation that when the cold end of a tube containing an oscillating
gas column (see the next section) passes from the vapour into the liquid,
the frequency of oscillation decreases by about 30 per cent, and the in-
tensity of the oscillation decreases by about 60 per cent (Gaffney and
Clement, 1955). Figure 7.8.[11] indicates the construction of the device.

_Thin rubber
membrane

Machined reducer

Figure 7.8.[11]. Liguid level finder
(Caffnay and Clement, 1955)
(By courtesy of the Editor, Review of

Scientific Instruments) .

Thin-watled tubing of
low thermal conductivity

~34in.
{{

Inconel (or German silver) tubing, # in. O.D., 0-008 in. wall, has been
found to work well. If a tube of much smaller diameter is used, air may
freeze inside the tube and stop the oscillations. If tubes of much larger
diameter are used, the oscillations may become so intense that the liquid
level is disturbed, the level thuis hecoming uncertain. Small sections cut
from: surgical gloves make rugged and sufficiently sensitive membranes;
they should be about 1 in. in diameter. The liquid level, either hydrogen
or helium, is found by holding the thumb or forefinger over the rubber
membrane and noting the point at which an abrupt frequency-intensity
change occurs. With care, helium levels can be measured to within 1 mm
by this technique. i

In a consideration of methods of liquid level determination, the follow-
ing very simple procedures should not be overlooked. The contents of
storage containers of liquid oxygen, air and nitrogen, which are appreci-
ably denser than liquid hydrogen and helium, are frequently followed by
simply weighing the container and its contents. A technique applicable to
all liquids is to use slit-silvered Dewar vessels which permit direct viewing
of the liquid level. :

7.9, THERMAL OSCILLATIONS

It has long been recognized that the gas in a tube, the closed end of which
_is hot and the open end of which is cool, can go into spontaneous oscilla-
tion. In fact, in Lord Rayleigh’s classic work, The Theory of Sound, reference
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7. STORAGE AND TRANSFER OF LIQUEFIED GASES

is made to the observation of this phenomenon by glass blowers and a
physical picture is given for the mechanism of these oscillations. In low
. temperature apparatus, conditions for such oscillations are frequently pre-
sent. While they always add heat to the low temperature portions of the
apparatus and are therefore undesirable, there is at least one reported in-
stance when such oscillations were used to good effect, namely, to stir liquid
and vapour in experiments in which the 3He/*He equilibrium ratios in
the two phases were being determined (Taconis, Beenakker, Nier and
Aldrich, 1949). '

Keesom (1942) has commented on the T.eiden experience in this con- .

nection; the heat transport effect for liquid helium was noted as was the
fact that this phenomenon interfered with measurements of the ratio of
specific heats at liquid hydrogen temperatures. It has been observed that
spontaneous oscillations can increase the evaporation rate of storage con-
tainers by a factor of one thousand (Wexler, 1951). Squire (1953) has com-
mented on some of the properties of these oscillations. More recent work
(Clement and Gaflney, 1955), prompted by difficulties in using a particular
transfer tube, reported additional descriptive observations; this work has led
to the simple level finder described above. - :

While both a qualitative description of the mechanism of thermal oscil-
lations in low tcmpcraturc apparatus has been given and a quantitive
treatment attempted (Kramers, 1949), the physical picturé remains essen-
tially that given by Rayleigh. Consider a tube closed at the room tempera-
ture end, open at the low temperature end and terminating in either the
vapour or liquid phase. It may be assumed from the geometry that the

tube is a quarter-wave resonant tube with a pressure node at the cold, -

open end and a pressure antinode at the hot, closed end. During the com-
pression phase; the motion of gas istowards the closed, hot end of the tube.
The gas undergoing compression and moving towards the hot end heats
because of the work being done on it. If the temperature gradient is suffi-
ciently steep along the wall of the tube, the heated gas will find itself in
contact with a section of wall at a still higher temperature, so that heat will
flow into the gas, thereby increasing the pressure and energy content further.
During the expansion phase, the reverse process occurs, the gas rejecting
heat to the wall at low temperature. .

This process may be visualized (Garfunkel, 1957) by referring to Figure
7.9.[12], wherein are plotted pressure—volume adiabatics for an element of
mass of the gas undergoing oscillation. Two cases are considered. In Figure
7.9.[12]5 the temperature gradient is steep enough for the heat exchange
of the gas with the wall to reinforce both the expansions and contractions
of the gas. The P-V loop will expand until dissipation of energy external
to the gas, e.g. by sound radiation, is just equal to the area of the loop. If
the temperature gradient is not steep enough, the P-V loop tends to col-
lapse as the result of the heat exchange between the gas and the wall as
shown in Figure 7.9.[12]a. From the figures it is clear that in addition to
an appropriate temperature gradient, the thermal contact between the gas
and the wall must be neither too good, in which case a single line would
be traced out on the P-¥ diagram, nor too poor, in which case insufficient
heat will pass between the gas and the tube. This explains the observation
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7.9. THERMAL OSCILLATIONS

(Clement and Gaffney, 1955) that thermal oscillations are restricted to a
range of tube diameters. When a cavity is added at the closed end it is
observed that at first the intensity of the oscillations increases and then
decreases as the volume of the cavity increases. This can be explained by

Adiabatics . Pys V for thermal
7 equilibrium with
the wall
P ys V for
thermal
° equilibrium Adiabatics
= with thewall 2 )
2 @
g 0
i £
(a) (b)
Volume ' Volume

Figure 7.9.[12]. Representation of thermal oscillations in’ the P~V plane: (a) temperature
gradient too small to sustain thermal oscillations ; (b) temperature gradient sufficient to sustain
thermal oscillations

noting that the initial increase in volume permits larger displacements of
gas at the hot end. As the volume increases, however, this end approaches
the characteristics of an open end, thereby changing the mode of vibra-
tion in the tube to one unfavourable for sustained oscillations. Again the
foregoing makes plausible the efficacy of closing the low temperature end
of a tube in minimizing the strength of the thermal oscillations (Squire,
1953; Clement and Gafiney, 1955). :

7.10. FABRICATION TECHNIQUES FOR METAL VESSELS

While fabrication techniques for metal Dewar vessels vary considerably,
depending on their application, many of the techniques used may be
illustrated by outlining the procedure used in the fabrication of a con-
tainer like that shown in Figure 7.4.[6]6. The first step consists of soft
soldering a low conductivity neck tube, of stainless steel or inconel, to the
upper copper spinning of what will become the inner sphere. The spinnings
vary in thickness from about J in. for containers of 5-10-1. capacity to 4 in.
for containers of 100-1. capacity. Solder fillets are run in on both the upper
and under sections of the joint between the spinning and the neck tube.
Next the inner sphere is completed by soldering the lower half of the sphere
to the upper one. These are arranged to fit tightly in the absence of solder.
Soldering is accomplished by pre-tinning the joining surfaces, running a
neat filleted solder band around the joint, and then puddling a soft solder

- band around the joint. The outer surface of the inner sphere is washed

free of spinning soap and dipped in a weak acid solution to remove the
oxide. This surface, as well as the outer surface of the neck tube, is
buffed on a wheel, and the surfaces are then hand polished with a fine
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7.11. LOW TEMPERATURE APPLICATIONS OF GLASS WORKING TECHNIQUES

a Dewar vessel or transfer tube goes soft, the vacuum space is flushed with
dry nitrogen and the space is repumped.

7.11.6. GLASS-TO-METAL SEALS

Glass-to-metal seals are very useful in low temperature research. They
simplify the assembly of apparatus, eliminate the necessity for having, in
the warm regions of the vacuum system, fabric-covered wires which can
desorb gas, and make it possible to cool lead wires directly in the refrigerant
hath. Both tube and wire seals are required. A number of successful metal
and glass combinations have been used (Corak and Wexler, 1953), includ-
ing copper Housekeeper seals, zirconium-to-glass, and tungsten-to-glass.
About Kovar-to-glass seals there is disagreement as to their usefulness, some
investigators reporting excellent results (Lane, 1947) and others reporting
unreliable results (Corak and Wexler, 1953). It is possible that the differ-
ence in experience reflects differences in performance of seals of this type
depending upon the composition of the Kovar and of the sealing glass.
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