that travels in a circular orbit of radius R about the observer. Let the speed of the
source be v_{s}. Consider the Doppler shift observed by a stationary observer, from a source

PROBLEM 2: THE TRANSVERSE DOPPLER SHIFT
to the air, while the observer is receding from the source, moving in the opposite
direction with speed v_{o} relative to the air. Calculate the Doppler shift z. and the observer are moving. Suppose the source is moving with a speed v_{s} relative Consider the Doppler shift of sound waves, for a case in which both the source NOILON NI YRAHGSGO GNV

PROBLEM 1: NONRELATIVISTIC DOPPLER SHIFT, SOURCE
AND OBSERVER IN MOTION
READING ASSIGNMENT: The First Three Minutes, Chapters 1, 2, and 3.
 PROBLEM SET 1

Prof. Alan Guth
Physics 8.286: The Early Universe September 13, 2005 Physics Department
Peptember 13, 2005

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
speed u are very small compared to the speed of light c, what is the Doppler

Observer
 - KNOIONHNAL

$$
\partial / a \equiv \varnothing
$$

as http://arXiv.org/abs/astro-ph/0301096

PROBLEM 5: DISTANCE IN TERMS OF REDSHIFT \boldsymbol{z} - Кхе ${ }^{\text {e.s }}$

NOISSING HO GHIL :
us.
find the present value of the physical distance ℓ_{p} between this distant galaxy and

PROBLEM 3: DISTANCE TO THE GALAXY unreliable. was announced in 1999, but the measurement of the redshift was later found to be

 with a well-determined redshift, the galaxy J132418.3 + 271455, which has a redshift redshift z. As a concrete example we will consider the most distant known object nonrelativistic matter.) We will suppose that a distant quasar is observed with a this is the behavior of a flat universe with a mass density that is dominated by the answers to any of the questions below. (We will see in Lecture Notes 4 that where b is an arbitrary constant of proportionality which should not appear in $\varepsilon / z^{7 q}=(7) \Psi$
factor is given by
In the rest of this problem set we will consider a universe in which the scale
INTRODUCTION TO REMAINDER OF PROBLEM SET
 relativity.] Our expanding universe violates special relativity, but is consistent with general
 light c, and evaluate it numerically for the case $z=6.58$. Express your answer as a us is changing. Express your answer in terms of the redshift z and the speed of

PROBLEM 8: RECEIVED RADIATION FLUX
At the time of emission, the galaxy had a power output P (measured, say, in
ergs/sec) which was radiated uniformly in all directions. This power was emitted
in the form of photons. What is the radiation energy flux J from this galaxy at the
earth today? Energy flux (which might be measured in ergs-cm ${ }^{-2}$-sec ${ }^{-1}$) is defined
as the energy per unit area per unit time striking a surface that is orthogonal to the
direction of energy flow. The easiest way to solve this problem is to consider the
trajectories of the photons, as viewed in comoving coordinates. You must calculate
the rate at which photons arrive at the detector, and you must also use the fact
that the energy of each photon is proportional to its frequency, and is therefore
decreased by the redshift. You may find it useful to think of the detector as a small
part of a sphere that is centered on the source, as shown in the following diagram:

