
initial velocity of a particle at position \vec{r} is given by the Hubble relation l

$\tau / \varepsilon^{q 9}=(7) \mathcal{Y}$

that the Robertson-Walker scale factor behaves as
Consider a flat universe which is filled with some peculiar form of matter, so

- $Л T O \Lambda$ H GINIL TV

What is $V(R)$? Will this universe expand forever, or will it collapse?

$(\mathcal{U}) ~ \Lambda+{ }_{z} \Psi \frac{\sigma}{I}=G$

e) Find an expression for a conserved quantity of the form R, ρ, and any relevant constants. scale factor $R(t)$. Use this expression to obtain an expression for R in terms of
d) Express the mass density $\rho(t)$ in terms of the initial mass density ρ_{i} and the
the lecture notes. As before, we define the scale factor $R(t) \equiv u\left(r_{i}, t\right)$.

show that $u\left(r_{i}, t\right)$ is in fact independent of r_{i}. This implies that the cylinder
$\frac{\cdot!}{\left(7^{6} \cdot \iota\right) \cdot l} \equiv\left(7^{6} \cdot l\right) n$
c) Defining

b) As in the lecture notes, we let $r\left(r_{i}, t\right)$ denote the trajectory of a particle that

$\stackrel{\iota}{r_{V}}-=\underline{\square}$
acceleration at any point is given by

8.286 PROBLEM SET 2, FALL 2005

 әq II! series expansion to express θ as a function of t, and then R as a function of t.
e) For very small values of t, it is possible to use the first nonzero term of a powerand θ.

 b) Find the mass density ρ as a function of α and θ.

$\frac{i \varepsilon}{{ }_{\varepsilon} \theta}+\frac{i z}{z^{\theta}}+\frac{\mathrm{iL}}{\theta}+\mathrm{I}={ }_{\theta^{2}}$
$\frac{7}{\theta^{-\partial}-\theta^{\partial}}=\theta$ पuIs
which you should know, may also prove useful on parts (e) and (f):

pue
were given in Lecture Notes 5 as

 (squiod ot) \#Stucina

 (b) Find ρ, the mass density, as a function of α and θ.

$$
\cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2}
$$

-

8.286 PROBLEM SET 2, FALL 2005 non

