

Consider a universe described by the Robertson-Walker metric, Eq. (6.21),
which describes an open, closed, or flat universe, depending on the value of k : (5 points)

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology,
Chapters 4 and 5 . DUE DATE: Thursday, October 27, 2005

\& 山马S WrTGOYd

 Prof. Alan Guth Physics 8.286: The Early Universe October 20, 2005 Physics DepartmentMASSACHUSETTS INSTITUTE OF TECHNOLOGY

Break the volume up into spherical shells of infinitesimal thickness, extending from We will continue to use the convention that $k= \pm 1$, so in this case $k=1$ and $a=R$.

PROBLEM 2: VOLUME OF A CLOSED UNIVERSE (5 points) ψ to $\psi+d \psi$:

 are both measurable quantities. Since the space described by this metric is

, чuis $=\underline{\underline{z^{\ell}+L}} \int$

pue

8.286 PROBLEM SET 3, FALL 2005

 problem you should consider $R(t)$ to be an arbitrary function. You should simplify

Then
convenient to work with an alternative radial coordinate ψ, related to r by where I have taken $k=-1$. To discuss motion in the radial direction, it is more

The spacetime metric for a homogeneous, isotropic, open universe is given by
This problem was taken from Quiz 2 of 1996, where it counted 50 points out of 100.

PROBLEM 4: TRAJECTORIES AND DISTANCES IN AN OPEN

 $: \gamma / m=\theta \nabla$ әโяие

c
 the proper distance $\ell_{\text {prop }}$ of galaxy G.

 have different velocities, because each is at rest with respect to the matter in

 d) There are a number of different ways of defining distances in cosmology, and terms of ψ_{G}, t_{G}, z_{G}, or the function $R(t)$.)

 c) To estimate the number of galaxies that one expects to see in a given range on t_{G}, as well as ψ_{G} or any property of the function $R(t)$.) b) What is the redshift z_{G} of the light from galaxy G ? (Your answer may depend (•K.I7

 located at $\psi=\psi_{G}$. Write down an equation which determines the time t_{G} at U.IOf ə[duịs әЧł

to a distortion in spacetime

 PROBLEM 5: GEODESICS IN A FLAT UNIVERSE
 coordinates can be shifted so that the galaxy G is at the origin.)

J received from a source of power P at a distance ℓ is given by $J=P /\left(4 \pi \ell^{2}\right)$: actual total power output is known. In a static, Euclidean space, the energy flux is determined by measuring the apparent brightness of an object for which the f) A third common definition of distance is called luminosity distance, which

What is the angular size distance $\ell_{\text {ang }}$ of galaxy G ?

s

 is a two-dimensional space of constant negative curvature. In other words, this
әләчм

distance relation
is problem is not required, but can be done for 5 points extra credit.)
I stated in Lecture Notes 6 that the space invented by Klein, describ

falls off as $1 / R(t)$. (This implies, by the way, that if the particle were described
as a quantum mechanical wave with wavelength $\lambda=h /|\vec{p}|$, then its wavelength
would stretch with the expansion of the universe, in the same way that the
wavelength of light is redshifted.)

$$
\frac{z^{0} / z^{a}-\mathrm{L}}{a u}=d
$$

Show that the momentum of the particle, defined relativistically by
$\frac{7 p}{x p}(y) \boldsymbol{y}=a$
(c) The physical velocity of the particle relative to the galaxies that it is passing (b) Use the expression for the spacetime metric to relate $d x / d t$ to $d x / d \tau$. respect to proper time (i.e., $d x / d \tau$) falls off as $1 / R^{2}(t)$.

 axis. (Note that the galaxies are on the average at rest in this system, but one can rather than polar coordinates. Now consider a particle which moves along the x Since the spatial metric is flat, we have the option of writing it in terms of Cartesian
8.286 PROBLEM SET 3, FALL 2005
Total points for Problem Set 3: 35, plus up to 10 points extra credit.

order in the infinitesimal quantities, and show that
 $s p=\left(z^{\prime} \mathrm{I}\right) p$
(b) The next step is to derive the metric from the distance function above. Let

