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PROBLEM 1: CIRCULAR ORBITS IN A SCHWARZSCHILD MET-
RIC (10 points)

(This was originally Problem 3 on Problem Set 3, but was held over.)

The Schwarzschild metric, which describes the external gravitational field of
any spherically symmetric distribution of mass, is given by

c2dτ 2 = −ds2 =
(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dθ2 − r2 sin2 θ dφ2 ,

where M is the total mass of the object, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ =
2π is identified with φ = 0. We will be concerned only with motion outside the
Schwarzschild horizon RSch = 2GM/c2, so we can take r > RSch. (This restriction
allows us to avoid the complications of understanding the effects of the singularity
at r = RSch.) In this problem we will use the geodesic equation to calculate the
behavior of circular orbits in this metric. We will assume a perfectly circular orbit
in the x-y plane: the radial coordinate r is fixed, θ = 90◦, and φ = ωt, for some
angular velocity ω.

(a) Use the metric to find the proper time interval dτ for a segment of the path
corresponding to a coordinate time interval dt. Note that dτ represents the
time that would actually be measured by a clock moving with the orbiting
body. Your result should show that

dτ

dt
=

√
1− 2GM

rc2
− r2ω2

c2
.

Note that for M = 0 this reduces to the special relativistic relation dτ/dt =√
1− v2/c2, but the extra term proportional to M describes an effect that is

new with general relativity— the gravitational field causes clocks to slow down,
just as motion does.

(b) Show that the geodesic equation of motion (Eq. (6.38)) for one of the coordi-
nates takes the form

0 =
1
2
∂gφφ

∂r

(
dφ

dτ

)2

+
1
2
∂gtt

∂r

(
dt

dτ

)2

.
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(c) Show that the above equation implies

r

(
dφ

dτ

)2

=
GM

r2

(
dt

dτ

)2

,

which in turn implies that

rω2 =
GM

r2
.

Thus, the relation between r and ω is exactly the same as in Newtonian me-
chanics. [Note, however, that this does not really mean that general relativity
has no effect. First, ω has been defined by dφ/dt, where t is a time coordinate
which is not the same as the proper time τ that would be measured by a clock
on the orbiting body. Second, r does not really have the same meaning as in
the Newtonian calculation, since it is not the measured distance from the cen-
ter of motion. Measured distances, you will recall, are calculated by integrating
the metric, as for example in Problem 1. Since the angular (dθ2 and dφ2)
terms in the Schwarzschild metric are unaffected by the mass, however, it can
be seen that the circumference of the circle is equal to 2πr, as in the Newtonian
calculation.]

PROBLEM 2: GEODESICS IN A FLAT UNIVERSE

(This problem is not required, but can be done for 5 points extra credit. It was
originally Problem 5 on Problem Set 3, but was held over.)

According to general relativity, in the absence of any non-gravitational forces
a particle will travel along a spacetime geodesic. In this sense, gravity is reduced
to a distortion in spacetime.

Consider the case of a flat (i.e., k = 0) Robertson–Walker metric, which has
the simple form

ds2ST = −c2dt2 +R2(t)
[
dx2 + dy2 + dz2

]
.

Since the spatial metric is flat, we have the option of writing it in terms of Cartesian
rather than polar coordinates. Now consider a particle which moves along the x-
axis. (Note that the galaxies are on the average at rest in this system, but one can
still discuss the trajectory of a particle which moves through the model universe.)

(a) Use the geodesic equation to show that the coordinate velocity computed with
respect to proper time (i.e., dx/dτ ) falls off as 1/R2(t).

(b) Use the expression for the spacetime metric to relate dx/dt to dx/dτ .
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(c) The physical velocity of the particle relative to the galaxies that it is passing
is given by

v = R(t)
dx

dt
.

Show that the momentum of the particle, defined relativistically by

p =
mv√

1− v2/c2

falls off as 1/R(t). (This implies, by the way, that if the particle were described
as a quantum mechanical wave with wavelength λ = h/|�p |, then its wavelength
would stretch with the expansion of the universe, in the same way that the
wavelength of light is redshifted.)

PROBLEM 3: GAS PRESSURE AND ENERGY CONSERVATION (10
points)

In this problem we will pursue the implications of the conservation of energy.
Consider first a gas contained in a chamber with a movable piston, as shown below:

Let U denote the total energy of the gas, and let p denote the pressure. Suppose
that the piston is moved a distance dx to the right. (We suppose that the motion
is slow, so that the gas particles have time to respond and to maintain a uniform
pressure throughout the volume.) The gas exerts a force pA on the piston, so the
gas does work dW = pAdx as the piston is moved. Note that the volume increases
by an amount dV = Adx, so dW = pdV . The energy of the gas decreases by this
amount, so

dU = −pdV . (1)

It turns out that this relation is valid whenever the volume of a gas is changed,
regardless of the shape of the volume.

Now consider a homogeneous, isotropic, expanding universe, described by a
scale factor R(t). Let u denote the energy density of the gas that fills it. (Remember
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that u = ρc2, where ρ is the mass density of the gas.) We will consider a fixed
coordinate volume Vcoord, so the physical volume will vary as

Vphys(t) = R3(t)Vcoord . (2)

The energy of the gas in this region is then given by

U = Vphysu . (3)

(a) Using these relations, show that

d

dt

(
R3ρc2

)
= −p d

dt
(R3) , (4)

and then that

ρ̇ = −3
Ṙ

R

(
ρ+

p

c2

)
, (5)

where the dot denotes differentiation with respect to t.

(b) The scale factor evolves according to the relation

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
. (6)

Using (5) and (6), show that

R̈ = −4π
3
G

(
ρ+

3p
c2

)
R . (7)

This equation describes directly the deceleration of the cosmic expansion. Note
that there are contributions from the mass density ρ, but also from the pressure
p.

(c) So far our equations have been valid for any sort of a gas, but let us now
specialize to the case of black-body radiation. For this case we know that
ρ = aT 4, where a is a constant and T is the temperature. We also know that
as the universe expands, RT remains constant. Using these facts and Eq. (5),
find an expression for p in terms of ρ.
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PROBLEM 4: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (10 points)

A radiation-dominated universe behaves differently from a matter-dominated
universe because the pressure of the radiation is significant. In this problem we
explore the role of pressure for several fictitious forms of matter.

(a) For the first fictitious form of matter, the mass density ρ decreases as the scale
factor R(t) grows, with the relation

ρ(t) ∝ 1
R6(t)

.

What is the pressure of this form of matter? [Hint: the answer is proportional
to the mass density.]

(b) Find the behavior of the scale factor R(t) for a flat universe dominated by the
form of matter described in part (a). You should be able to determine the
function R(t) up to a constant factor.

(c) Now consider a universe dominated by a different form of fictitious matter,
with a pressure given by

p =
1
2
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1
Rn(t)

.

Find the power n.

PROBLEM 5: TIME EVOLUTION OF A UNIVERSE WITH MYSTE-
RIOUS STUFF (5 points)

Suppose that a model universe is filled with a peculiar form of matter for which

ρ ∝ 1
R5(t)

.

Assuming that the model universe is flat, calculate

(a) The behavior of the scale factor, R(t). You should be able to find R(t) up to
an arbitrary constant of proportionality.

(b) The value of the Hubble parameter H(t), as a function of t.

(c) The physical horizon distance, )p,horizon(t).

(d) The mass density ρ(t).

Total points for Problem Set 4: 35, plus up to 5 points extra credit (of
which 10 points plus 5 extra credit points were held over from Problem
Set 3)


