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T
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E
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U
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O
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P
rof.A
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G
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D
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E
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A
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E
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T
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R
E
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D
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G
A

S
S
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N
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E
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T
:
B
arbara

R
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In
tro

d
u
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n
to

C
o
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o
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g
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C
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6.

P
R

O
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L
E
M

1:
C

IR
C

U
L
A

R
O

R
B

IT
S
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A

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

-
R

IC
(10

points)

(T
his

w
as

originally
P
roblem

3
on

P
roblem

Set
3,
but

w
as

held
over.)

T
he

Schw
arzschild

m
etric,

w
hich

describes
the

external
gravitational

field
of

any
spherically

sym
m
etric

distribution
of

m
ass,is

given
by

c
2d
τ

2
=

−
d
s
2
= (

1−
2
G
M

rc
2 )

c
2d
t
2− (

1−
2
G
M

rc
2 )

−
1

d
r
2−

r
2d
θ
2−

r
2
sin

2
θ
d
φ

2
,

w
here

M
is

the
total

m
ass

of
the

ob
ject,

0
≤
θ

≤
π,

0
≤
φ
<

2
π,

and
φ

=
2
π

is
identified

w
ith

φ
=

0.
W
e
w
ill

be
concerned

only
w
ith

m
otion

outside
the

Schw
arzschild

horizon
R

S
ch

=
2
G
M
/
c
2,

so
w
e
can

take
r
>
R

S
ch .

(T
his

restriction
allow

s
us

to
avoid

the
com

plications
of

understanding
the

effects
of

the
singularity

at
r
=
R

S
ch .)

In
this

problem
w
e
w
ill

use
the

geodesic
equation

to
calculate

the
behavior

of
circular

orbits
in

this
m
etric.

W
e
w
ill

assum
e
a
perfectly

circular
orbit

in
the

x-y
plane:

the
radial

coordinate
r
is

fixed,
θ
=

90 ◦,
and

φ
=
ω
t,

for
som

e
angular

velocity
ω
.

(a)
U
se

the
m
etric

to
find

the
proper

tim
e
interval

d
τ
for

a
segm

ent
of

the
path

corresponding
to

a
coordinate

tim
e
interval

d
t.

N
ote

that
d
τ
represents

the
tim

e
that

w
ould

actually
be

m
easured

by
a
clock

m
oving

w
ith

the
orbiting

body.
Y
our

result
should

show
that

d
τd
t
= √

1−
2
G
M

rc
2

−
r
2ω

2

c
2
.

N
ote

that
for

M
=

0
this

reduces
to

the
special

relativistic
relation

d
τ
/
d
t
=

√
1−

v
2/
c
2,

but
the

extra
term

proportional
to
M

describes
an

effect
that

is
new

w
ith

generalrelativity—
the

gravitationalfield
causes

clocks
to

slow
dow

n,
just

as
m
otion

does.

(b)
Show

that
the

geodesic
equation

of
m
otion

(E
q.

(6.38))
for

one
of

the
coordi-

nates
takes

the
form

0
=

12
∂
g

φ
φ

∂
r (

d
φ

d
τ )

2

+
12
∂
g

tt

∂
r (

d
t

d
τ )

2

.
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(c)
Show

that
the

above
equation

im
plies

r (
d
φ

d
τ )

2

=
G
Mr
2 (

d
t

d
τ )

2

,

w
hich

in
turn

im
plies

that

rω
2
=
G
Mr
2
.

T
hus,

the
relation

betw
een

r
and

ω
is

exactly
the

sam
e
as

in
N
ew

tonian
m
e-

chanics.
[N
ote,

how
ever,

that
this

does
not

really
m
ean

that
general

relativity
has

no
eff
ect.

F
irst,

ω
has

been
defined

by
d
φ
/
d
t,
w
here

t
is
a
tim

e
coordinate

w
hich

is
not

the
sam

e
as

the
proper

tim
e
τ
that

w
ould

be
m
easured

by
a
clock

on
the

orbiting
body.

Second,
r
does

not
really

have
the

sam
e
m
eaning

as
in

the
N
ew
tonian

calculation,
since

it
is
not

the
m
easured

distance
from

the
cen-

ter
of
m
otion.

M
easured

distances,
you

w
illrecall,

are
calculated

by
integrating

the
m
etric,

as
for

exam
ple

in
P
roblem

1.
Since

the
angular

(d
θ
2
and

d
φ

2)
term

s
in
the

Schw
arzschild

m
etric

are
unaff

ected
by

the
m
ass,

how
ever,

it
can

be
seen

that
the

circum
ference

of
the

circle
is
equalto

2
π
r,
as
in
the

N
ew
tonian

calculation.]

P
R

O
B

L
E
M

2:
G

E
O

D
E
S
IC

S
IN

A
F
L
A
T

U
N

IV
E
R

S
E

(T
his

problem
is
not

required,
but

can
be

done
for

5
points

extra
credit.

It
w
as

originally
P
roblem

5
on

P
roblem

Set
3,
but

w
as

held
over.)

A
ccording

to
general

relativity,
in

the
absence

of
any

non-gravitationalforces
a
particle

w
ill

travel
along

a
spacetim

e
geodesic.

In
this

sense,
gravity

is
reduced

to
a
distortion

in
spacetim

e.

C
onsider

the
case

of
a
flat

(i.e.,
k
=

0)
R
obertson–W

alker
m
etric,

w
hich

has
the

sim
ple

form

d
s
2S
T
=

−
c
2d
t
2
+
R

2(t) [d
x

2
+
d
y
2
+
d
z
2 ]

.

Since
the

spatialm
etric

is
flat,w

e
have

the
option

ofw
riting

it
in

term
s
ofC

artesian
rather

than
polar

coordinates.
N
ow

consider
a
particle

w
hich

m
oves

along
the

x-
axis.

(N
ote

that
the

galaxies
are

on
the

average
at

rest
in

this
system

,but
one

can
stilldiscuss

the
trajectory

of
a
particle

w
hich

m
oves

through
the

m
odeluniverse.)

(a)
U
se

the
geodesic

equation
to

show
that

the
coordinate

velocity
com

puted
w
ith

respect
to

proper
tim

e
(i.e.,

d
x
/
d
τ)

falls
off

as
1
/
R

2(t).

(b)
U
se

the
expression

for
the

spacetim
e
m
etric

to
relate

d
x
/
d
t
to
d
x
/
d
τ.
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(c)
T
he

physical
velocity

of
the

particle
relative

to
the

galaxies
that

it
is

passing
is

given
by

v
=
R
(t)
d
xd
t
.

Show
that

the
m
om

entum
of

the
particle,defined

relativistically
by

p
=

m
v

√
1−

v
2/
c
2

falls
off

as
1
/
R
(t).

(T
his

im
plies,by

the
w
ay,that

ifthe
particle

w
ere

described
as

a
quantum

m
echanicalw

ave
w
ith

w
avelength

λ
=
h
/|�p|,then

its
w
avelength

w
ould

stretch
w
ith

the
expansion

of
the

universe,
in

the
sam

e
w
ay

that
the

w
avelength

of
light

is
redshifted.)

P
R

O
B

L
E
M

3:
G

A
S

P
R

E
S
S
U

R
E

A
N

D
E
N

E
R

G
Y

C
O

N
S
E
R
V
A
T

IO
N
(10

points)

In
this

problem
w
e
w
ill

pursue
the

im
plications

of
the

conservation
of

energy.
C
onsider

first
a
gas

contained
in

a
cham

ber
w
ith

a
m
ovable

piston,as
show

n
below

:

L
et
U

denote
the

total
energy

of
the

gas,
and

let
p
denote

the
pressure.

Suppose
that

the
piston

is
m
oved

a
distance

d
x
to

the
right.

(W
e
suppose

that
the

m
otion

is
slow

,
so

that
the

gas
particles

have
tim

e
to

respond
and

to
m
aintain

a
uniform

pressure
throughout

the
volum

e.)
T
he

gas
exerts

a
force

p
A

on
the

piston,
so

the
gas

does
w
ork

d
W

=
p
A
d
x
as

the
piston

is
m
oved.

N
ote

that
the

volum
e
increases

by
an

am
ount

d
V

=
A
d
x,

so
d
W

=
p
d
V
.
T
he

energy
of

the
gas

decreases
by

this
am

ount,so
d
U

=
−
p
d
V
.

(1)

It
turns

out
that

this
relation

is
valid

w
henever

the
volum

e
of

a
gas

is
changed,

regardless
of

the
shape

of
the

volum
e.

N
ow

consider
a
hom

ogeneous,
isotropic,

expanding
universe,

described
by

a
scale

factor
R
(t).

L
et
u
denote

the
energy

density
ofthe

gas
that

fills
it.

(R
em

em
ber
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that
u

=
ρ
c
2,

w
here

ρ
is

the
m
ass

density
of

the
gas.)

W
e
w
ill

consider
a
fixed

coordinate
volum

e
V

c
o
o
r
d ,so

the
physicalvolum

e
w
illvary

as

V
p
h
y
s (t)

=
R

3(t)V
c
o
o
rd
.

(2)

T
he

energy
of

the
gas

in
this

region
is

then
given

by

U
=
V

p
h
y
s u
.

(3)

(a)
U
sing

these
relations,show

that

dd
t (R

3ρ
c
2 )

=
−
p
dd
t (R

3)
,

(4)

and
then

that

ρ̇
=

−
3
ṘR (

ρ
+
pc
2 )

,
(5)

w
here

the
dot

denotes
differentiation

w
ith

respect
to
t.

(b)
T
he

scale
factor

evolves
according

to
the

relation

(
ṘR )

2

=
8
π3
G
ρ−

k
c
2

R
2
.

(6)

U
sing

(5)
and

(6),
show

that

R̈
=

−
4
π3
G (

ρ
+

3
pc
2 )

R
.

(7)

T
his

equation
describes

directly
the

deceleration
ofthe

cosm
ic
expansion.

N
ote

that
there

are
contributions

from
the

m
ass

density
ρ,but

also
from

the
pressure

p.

(c)
So

far
our

equations
have

been
valid

for
any

sort
of

a
gas,

but
let

us
now

specialize
to

the
case

of
black-body

radiation.
For

this
case

w
e
know

that
ρ
=
a
T

4,
w
here

a
is

a
constant

and
T

is
the

tem
perature.

W
e
also

know
that

as
the

universe
expands,

R
T

rem
ains

constant.
U
sing

these
facts

and
E
q.

(5),
find

an
expression

for
p
in

term
s
of
ρ.



8
.2

8
6

P
R

O
B

L
E

M
S
E

T
4
,
F
A

L
L

2
0
0
5

p
.
5

P
R

O
B

L
E
M

4:
T

H
E

E
F
F
E
C

T
O

F
P

R
E
S
S
U

R
E

O
N

C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
(10

points)

A
radiation-dom

inated
universe

behaves
differently

from
a
m
atter-dom

inated
universe

because
the

pressure
of

the
radiation

is
significant.

In
this

problem
w
e

explore
the

role
of

pressure
for

severalfictitious
form

s
of

m
atter.

(a)
For

the
first

fictitious
form

ofm
atter,the

m
ass

density
ρ
decreases

as
the

scale
factor

R
(t)

grow
s,w

ith
the

relation

ρ(t)∝
1

R
6(t)

.

W
hat

is
the

pressure
of

this
form

of
m
atter?

[H
int:

the
answ

er
is
proportional

to
the

m
ass

density.]

(b)
F
ind

the
behavior

of
the

scale
factor

R
(t)

for
a
flat

universe
dom

inated
by

the
form

of
m
atter

described
in

part
(a).

Y
ou

should
be

able
to

determ
ine

the
function

R
(t)

up
to

a
constant

factor.

(c)
N
ow

consider
a
universe

dom
inated

by
a
different

form
of

fictitious
m
atter,

w
ith

a
pressure

given
by

p
=

12
ρ
c
2
.

A
s
the

universe
expands,the

m
ass

density
of

this
form

of
m
atter

behaves
as

ρ(t)∝
1

R
n(t)

.

F
ind

the
pow

er
n.
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points)

Suppose
that

a
m
odeluniverse

is
filled

w
ith

a
peculiar

form
ofm

atter
for

w
hich

ρ∝
1

R
5(t)

.

A
ssum

ing
that

the
m
odeluniverse

is
flat,calculate

(a)
T
he

behavior
of

the
scale

factor,
R
(t).

Y
ou

should
be

able
to

find
R
(t)

up
to

an
arbitrary

constant
of

proportionality.

(b)
T
he

value
of

the
H
ubble

param
eter

H
(t),

as
a
function

of
t.

(c)
T
he

physicalhorizon
distance,

)
p
,h

o
riz

o
n (t).

(d)
T
he

m
ass

density
ρ(t).

T
otal

p
oin

ts
for

P
rob

lem
S
et

4:
35,

p
lu

s
u
p

to
5

p
oin
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ex

tra
cred

it
(of

w
h
ich

10
p
oin

ts
p
lu

s
5

ex
tra

cred
it

p
oin

ts
w

ere
h
eld

over
from

P
rob

lem
S
et

3)


