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PROBLEM SET 5

DUE DATE: Thursday, December 1, 2005

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology,
Chapters 8 and 9. Steven Weinberg, The First Three Minutes, Chapters 6,
7, and 8. (You may find Ryden’s Chapter 7 useful for helping you to under-
stand the lecture notes, but you are not otherwise responsible for it.)

PROBLEM 1: EFFECT OF AN EXTRA NEUTRINO SPECIES (5
points)

According to the standard assumptions (which were used in the lecture notes),
there are three species of effectively massless neutrinos. In the temperature range
of 1 MeV < kT < 100 MeV, the mass density of the universe is believed to have
been dominated by the black-body radiation of photons, electron-positron pairs,
and these neutrinos, all of which were in thermal equilibrium.

(a) Under these assumptions, how long did it take (starting from the instant of the
big bang) for the temperature to fall to the value such that kT = 1 MeV?

(b) How much time would it have taken if there were one other species of massless
neutrino, in addition to the three which we are currently assuming?

(c) What would be the mass density of the universe when kT = 1 MeV under the
standard assumptions, and what would it be if there were one other species of
massless neutrino?

PROBLEM 2: ENTROPY AND THE BACKGROUND NEUTRINO
TEMPERATURE (5 points)

The formula for the entropy density of black-body radiation is given in Lecture
Notes 7. The derivation of this formula has been left to the statistical mechanics
course that you either have taken or hopefully will take. For our purposes, the
important point is that the early universe remains very close to thermal equilibrium,
and therefore entropy is conserved. The conservation of entropy applies even during
periods when particles, such as electron-positron pairs, are “freezing out” of the
thermal equilibrium mix. Since total entropy is conserved, the entropy density falls
off as 1/R3(t).

When the electron-positron pairs disappear from the thermal equilibrium mix-
ture as kT falls below mec

2 = 0.511 MeV, the weak interactions have such low cross
sections that the neutrinos have essentially decoupled. To a good approximation, all
of the energy and entropy released by the annihilation of electrons and positrons is
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added to the photon gas, and the neutrinos are unaffected. Use these facts to show
that as electron-positron pair annihilation takes place, RTγ increases by a factor of
(11/4)1/3, while RTν remains constant. It follows that after the disappearance of
the electron-positron pairs, Tν/Tγ = (4/11)1/3. As far as we know, nothing hap-
pens that significantly effects this ratio right up to the present day. So we expect
today a background of thermal neutrinos which are slightly colder than the 2.7◦K
background of photons.

PROBLEM 3: FREEZE-OUT OF MUONS (10 points)

A particle called the muon seems to be essentially identical to the electron,
except that it is heavier— the mass/energy of a muon is 106 MeV, compared to
0.511 MeV for the electron. The muon (µ−) has the same charge as an electron,
denoted by −e. There is also an antimuon (µ+), analogous to the positron, with
charge +e. The muon and antimuon have the same spin as the electron. There is
no known particle with a mass between that of an electron and that of a muon.

(a) The formula for the energy density of black-body radiation, as given by
Eq. (7.25) of the lecture notes, is written in terms of a normalization constant
g. What is the value of g for the muons, taking µ+ and µ− together?

(b) When kT is just above 106 MeV as the universe cools, what particles besides
the muons are contained in the thermal radiation that fills the universe? What
is the contribution to g from each of these particles?

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium
radiation. At these temperatures all of the other particles in the black-body
radiation are interacting fast enough to maintain equilibrium, so the heat given
off from the muons is shared among all the other particles. Letting R denote the
Robertson-Walker scale factor, by what factor does the quantity RT increase
when the muons disappear?

PROBLEM 4: BRIGHTNESS VS. REDSHIFT WITH A POSSIBLE
COSMOLOGICAL CONSTANT (10 points)

In Lecture Notes 8, we derived the relation between the power output P of a
source and the energy flux J , for the case of a closed universe:

J =
PH2

0 |Ωk,0|
4π(1 + zS)2c2 sin2 ψD

,

where

ψD =
√

|Ωk,0|
∫ zS

0

dz√
Ωm,0(1 + z)3 +Ωrad,0(1 + z)4 + Ωvac,0 +Ωk,0(1 + z)2

.
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Here zS denotes the observed redshift, H0 denotes the present value of the Hub-
ble constant, Ωm,0, Ωrad,0, and Ωvac,0 denote the present contributions to Ω from
nonrelativistic matter, radiation, and vacuum energy, respectively, and Ωk,0 ≡
1− Ωm,0 −Ωrad,0 −Ωvac,0.

(a) Derive the corresponding formula for the case of an open universe. You can
of course follow the same logic as the derivation in the lecture notes, but the
solution you write should be complete and self-contained. (I.e., you should
NOT say “the derivation is the same as the lecture notes except for . . . .”)

(b) Derive the corresponding formula for the case of a flat universe. Here there is
of course no need to repeat anything that you have already done in part (a). If
you wish you can start with the answer for an open or closed universe, taking
the limit as k → 0. The limit is delicate, however, because both the numerator
and denominator of the equation for J vanish as Ωk,0 → 0.

PROBLEM 5: MASS DENSITY OF VACUUM FLUCTUATIONS (10
points)

The energy density of vacuum fluctuations will be discussed qualitatively in
lecture. In this problem we will calculate in detail the energy density associated with
quantum fluctuations of the electromagnetic field. To keep the problem finite, we
will not consider all of space at once, but instead we will consider the electromagnetic
field inside a cube of side L, defined by coordinates

0 ≤ x ≤ L ,

0 ≤ y ≤ L ,

0 ≤ z ≤ L .

Our goal, however, will be to compute the energy density in the limit as the size of
the box is taken to infinity.

(a) The electromagnetic waves inside the box can be decomposed into a Fourier
sum of sinusoidal normal modes. Suppose we consider only modes that extend
up to a maximum wave number kmax, or equivalently modes that extend down
to a minimum wavelength λmin, where

kmax =
2π
λmin

.

How many such modes are there? I do not expect an exact answer, but your
approximations should become arbitrarily accurate when λmin � L. (These
mode counting techniques are probably familiar to many of you, but in case
they are not I have attached an extended hint after part (c).)
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(b) When the electromagnetic field is described quantum mechanically, each normal
mode behaves exactly as a harmonic oscillator: if the angular frequency of the
mode is ω, then the quantized energy levels have energies given by

En =
(
n+ 1

2

)
h̄ω ,

where h̄ is Planck’s original constant divided by 2π, and n is an integer. The
integer n is called the “occupation number,” and is interpreted as the number
of photons in the specified mode. The minimum energy is not zero, but instead
is 1

2
h̄ω, which is the energy of the quantum fluctuations of the electromagnetic

field. Assuming that the mode sum is cut off at λmin equal to the Planck
length (as defined in the Lecture Notes), what is the total mass density of
these quantum fluctuations?

(c) How does the mass density of the quantum fluctuations of the electromagnetic
field compare with the critical density of our universe?

Extended Hint:

The electromagnetic fields inside a closed box can be expanded as the sum of
modes, each of which has a sinusoidally varying time dependence, but the precise
form of these modes depends on the nature of the boundary conditions on the walls
of the box. Physically reasonable boundary conditions, such as total reflection,
are in fact difficult to use in calculations. However, it is known that in the limit
of an infinite-sized box, the nature of the boundary conditions will not make any
difference. We are therefore free to choose the simplest boundary conditions that
we can imagine, and for this purpose we will choose periodic boundary conditions.
That is, we will assume that the fields and their normal derivatives on each wall
are fixed to precisely match the fields and their normal derivatives on the opposite
wall.

To begin, we consider a wave in one dimension, moving at the speed of light.
Such waves are most easily described in terms of complex exponentials. If A(x, t)
represents the amplitude of the wave, then a sinusoidal wave moving in the positive
x-direction can be written as

A(x, t) = Re
[
Beik(x−ct)

]
,

where B is a complex constant and k is a real constant. Defining ω = c|k|, waves
in either direction can be written as

A(x, t) = Re
[
Bei(kx−ωt)

]
,

where the sign of k determines the direction. To be periodic with period L, the
parameter k must satisfy

kL = 2πn ,



8.286 PROBLEM SET 5, FALL 2005 p. 5

where n is an integer. So the spacing between modes is ∆k = 2π/L. The density
of modes dN/dk (i.e., the number of modes per interval of k) is then one divided
by the spacing, or 1/∆k, so

dN

dk
=

L

2π
(one dimension) .

In three dimensions, a sinusoidal wave can be written as

A( x, t) = Re
[
Bei(�k·�x−ωt)

]
,

where ω = c| k|, and

kxL = 2πnx , kyL = 2πny , kzL = 2πnz ,

where nx, ny, and nz are integers. Thus, in three-dimensional  k-space the allowed
values of  k lie on a cubical lattice, with spacing 2π/L. In counting the modes, one
should also remember that for photons there is an extra factor of 2 associated with
the fact that electromagnetic waves have two possible polarizations for each allowed
value of  k.

PROBLEM 6: BRIGHTNESS VS. REDSHIFT WITH A POSSIBLE
COSMOLOGICAL CONSTANT — NUMERICAL INTEGRA-
TION (EXTRA CREDIT, 8 pts)

Calculate numerically the result from Problem 4 for the case of a flat universe in
which the critical density is comprised of nonrelativistic matter and vacuum energy
(cosmological constant). Specifically, calculate numerical values for J/(PH2

0 ) as
a function of z, for Ωm,0 = 0.3 and Ωvac,0 = 0.7. Compute a table of values for
z = 0.1, 0.2, 0.3, . . . , 1.5. Feel free to attach a computer printout of these results, but
be sure that it is labeled well enough to be readable to someone other than yourself.
(If you are not confident in the expression that you obtained in Problem 1 for the
flat universe case, you can for equal credit do this problem for an open universe,
with Ωm,0 = 0.3 and Ωvac,0 = 0.6.) For pedagogical purposes you are asked to
compute these numbers to 5 significant figures, although one does not need nearly
so much accuracy to compare with data. For the fun of it, the solutions will be
written to 15 significant figures. Note that the speed of light is now defined to be
299,792,458 m/s.
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PROBLEM 7: PLOTTING THE SUPERNOVA DATA (EXTRA CREDIT,
7 pts)

The original data on the Hubble diagram based on Type Ia supernovae are
found in two papers. One paper is authored by the High Z Supernova Search Team,*
and the other is by the Supernova Cosmology Project.† More recent data from the
High Z team, which includes many more data points, can be found in Riess et
al., http://arXiv.org/abs/astro-ph/0402512.¶ (By the way, the lead author Adam
Riess was an MIT undergraduate physics major about 10 years ago.)

You are asked to plot the data from either the 2nd or 3rd of these papers, and
to include on the graph the theoretical predictions for several cosmological models.

The plot will be similar to the plots contained in these papers, and to the plot
on p. 121 of Ryden’s book, showing a graph of (corrected) magnitude m vs. redshift
z. Your graph should include the error bars. If you plot the Perlmutter et al. data,
you will be plotting “effective magnitude”m vs. redshift z. The magnitude is related
to the flux J of the observed radiation by m = −5

2
log10(J)+const. The value of the

constant in this expression will not be needed. The word “corrected” refers both to
corrections related to the spectral sensitivity of the detectors and to the brightness
of the supernova explosions themselves. That is, the supernova at various distances
are observed with different redshifts, and hence one must apply corrections if the
detectors used to measure the radiation do not have the same sensitivity at all
wavelengths. In addition, to improve the uniformity of the supernova as standard
candles, the astronomers apply a correction based on the duration of the light
output. Note that our ignorance of the absolute brightness of the supernova, of
the precise value of the Hubble constant, and of the constant that appears in the
definition of magnitude all combine to give an unknown but constant contribution
to the predicted magnitudes. The consequence is that you will be able to move your
predicted curves up or down (i.e., translate them by a fixed distance along the m
axis). You should choose the vertical positioning of your curve to optimize your fit,
either by eyeball or by some more systematic method.

If you choose to plot the data from the 3rd paper, Riess et al. 2004, then you
should see the note at the end of this problem.

For your convenience, the magnitudes and redshifts for the Supernova Cosmol-
ogy Project paper, from Tables 1 and 2, are summarized in a text file on the 8.286

* http://arXiv.org/abs/astro-ph/9805201, later published as Riess et al., Astro-
nomical Journal 116, 1009 (1998).

† http://arXiv.org/abs/astro-ph/9812133, later published as Perlmutter et al.,
Astrophysical Journal 517:565–586 (1999).
¶ Published as Astrophysical Journal 607:665-687 (2004).
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web page. The data from Table 5 of the Riess et al. 2004 paper, mentioned above,
is also posted on the 8.286 web page.

For the cosmological models to plot, you should include:

(i) A matter-dominated universe with Ωm = 1.

(ii) An open universe, with Ωm,0 = 0.3.

(iii) A universe with Ωm,0 = 0.3 and a cosmological constant, with Ωvac,0 = 0.7. (If
you prefer to avoid the flat case, you can use Ωvac,0 = 0.6. Or, if you want to
compare directly with Figure 4 of the Riess et al. (2004) paper, you should use
Ωm,0 = 0.29, Ωvac,0 = 0.71.)

You may include any other models if they interest you. You can draw the plot
with either a linear or a logarithmic scale in z. I would recommend extending your
theoretical plot to z = 3, if you do it logarithmically, or z = 2 if you do it linearly,
even though the data does not go out that far. That way you can see what possible
knowledge can be gained by data at higher redshift.

NOTE FOR THOSE PLOTTING DATA FROM RIESS ET AL. 2004:

Unlike the Perlmutter et al. data, the Riess et al. data is expressed in terms
of the distance modulus, which is a direct measure of the luminosity distance. The
distance modulus is defined both in the Riess et al. paper and in Ryden’s book
(p. 120) as

µ = 5 log10

(
dL

1 Mpc

)
+ 25 ,

where Ryden uses the notation m − M for the distance modulus, and dL is the
luminosity distance. The luminosity distance, in turn, is really a measure of the
observed brightness of the object. It is defined as the distance that the object would
have to be located to result in the observed brightness, if we were living in a static
Euclidean universe. More explicitly, if we lived in a static Euclidean universe and
an object radiated power P in a spherically symmetric pattern, then the energy flux
J at a distance d would be

J =
P

4πd2
.

That is, the power would be distributed uniformly over the surface of a sphere at
radius d. The luminosity distance is therefore defined as

dL =

√
P

4πJ
.

Thus, a specified value of the distance modulus µ implies a definite value of the
ratio J/P .



8.286 PROBLEM SET 5, FALL 2005 p. 8

In plotting a theoretical curve, you will need to choose a value for H0. Riess
et al. do not specify what value they used, but I found that their curve is most
closely reproduced if I choose H0 = 66 km-sec−1-Mpc−1. This seems a little on
the low side, since the value is usually estimated as 70–72 km-sec−1-Mpc−1, but
Riess et al. emphasize that they were not concerned with this value. They were
concerned with the relative values of the distance moduli, and hence the shape of
the graph of the distance modulus vs. z. In their own words, from Appendix A,
“The zeropoint, distance scale, absolute magnitude of the fiducial SN Ia or Hubble
constant derived from Table 5 are all closely related (or even equivalent) quantities
which were arbitrarily set for the sample presented here. Their correct value is not
relevant for the analyses presented which only make use of differences between SN Ia
magnitudes. Thus the analysis are independent of the aforementioned normalization
parameters.”

Total points for Problem Set 5: 40, plus up to 15 points extra credit.


