
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department
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Prof. Alan Guth

PROBLEM SET 3

DUE DATE: Thursday, September 27, 2007

READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chap-
ter 3; Barbara Ryden, Introduction to Cosmology, Chapter 4.

FIRST QUIZ: The first of three quizzes for the term will be given on Tuesday,
October 2, 2007.

PROBLEM 1: A CYLINDRICAL UNIVERSE (10 points)

The following problem originated on Quiz 2 of 1994, where it counted 30 points.

The lecture notes showed a construction of a Newtonian model of the universe
that was based on a uniform, expanding, sphere of matter. In this problem we will
construct a model of a cylindrical universe, one which is expanding in the x and y
directions but which has no motion in the z direction. Instead of a sphere, we will
describe an infinitely long cylinder of radius Rmax,i, with an axis coinciding with
the z-axis of the coordinate system:

We will use cylindrical coordinates, so

r =
√
x2 + y2

and

�r = xı̂+ y̂ ; r̂ =
�r

r
,
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where ı̂, ̂, and k̂ are the usual unit vectors along the x, y, and z axes. We will
assume that at the initial time ti, the initial density of the cylinder is ρi, and the
initial velocity of a particle at position �r is given by the Hubble relation

�vi = Hi�r .

a) By using Gauss’ law of gravity, it is possible to show that the gravitational
acceleration at any point is given by

�g = −Aµ
r
r̂ ,

where A is a constant and µ is the total mass per length contained within the
radius r. Evaluate the constant A.

b) As in the lecture notes, we let r(ri, t) denote the trajectory of a particle that
starts at radius ri at the initial time ti. Find an expression for r̈(ri, t), ex-
pressing the result in terms of r, ri, ρi, and any relevant constants. (Here an
overdot denotes a time derivative.)

c) Defining

u(ri, t) ≡ r(ri, t)
ri

,

show that u(ri, t) is in fact independent of ri. This implies that the cylinder
will undergo uniform expansion, just as the sphere did in the case discussed in
the lecture notes. As before, we define the scale factor R(t) ≡ u(ri, t).

d) Express the mass density ρ(t) in terms of the initial mass density ρi and the
scale factor R(t). Use this expression to obtain an expression for R̈ in terms of
R, ρ, and any relevant constants.

e) Find an expression for a conserved quantity of the form

E =
1
2
Ṙ2 + V (R) .

What is V (R)? Will this universe expand forever, or will it collapse?

PROBLEM 2: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLU-
TION (5 points)

Consider a flat universe which is filled with some peculiar form of matter, so
that the Robertson–Walker scale factor behaves as

R(t) = bt3/4 ,
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where b is a constant.

(a) For this universe, find the value of the Hubble “constant” H(t).

(b) Find the physical value of the horizon distance, �p,horizon(t).

(c) What is the mass density of the universe, ρ(t)? (In answering this question,
you will need to know that the equation for Ṙ/R, Eq. (4.24) in Lecture Notes
4, holds for all forms of matter, while the equation for R̈, Eq. (4.17), requires
modification if the matter has a significant pressure. Eq. (4.17) is therefore not
applicable to this problem.)

PROBLEM 3: ENERGY AND THE FRIEDMANN EQUATION (10
points)

The Friedmann equation,

 ṘR


2

=
8π
3
Gρ− kc

2

R2
, (1)

was derived in Lecture Notes 4 as a first integral of the equations of motion. The
equation was first derived in a different form,

E =
1
2
Ṙ2 − 4π

3
Gρi

R
= constant, (2)

where k = −2E/c2. In this form the equation looks more like a conservation of
energy relation, although the constant E does not have the dimensions of energy.
There are two ways, however, in which the quantity E can be connected to the
conservation of energy. It is related the energy of a test particle that moves with the
Hubble expansion, and it is also related to the total energy of the entire expanding
sphere of radius Rmax, which was discussed in Lecture Notes 4 as a method of
deriving the Friedmann equations. In this problem you will derive these relations.

First, to see the relation with the energy of a test particle moving with the
Hubble expansion, define a physical energy Ephys by

Ephys ≡ mr2iE , (3)

where m is the mass of the test particle and ri is its initial radius. Note that the
gravitational force on this particle is given by

�F = −GmM(ri)
r2

r̂ = −�∇Veff (r) , (4)
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where M(ri) is the total mass initially contained within a radius ri of the origin,
r is the present distance of the test particle from the origin, and the “effective”
potential energy Veff (r) is given by

Veff(r) = −GmM(ri)
r

. (5)

The motivation for calling this quantity the “effective” potential energy will be
explained below.

(a) Show that Ephys is equal to the “effective” energy of the test particle, defined
by

Eeff =
1
2
mv2 + Veff (r) . (6)

We understand that Eeff is conserved because it is the energy in an analogue problem
in which the test particle moves in the gravitational field of a point particle of mass
M(ri), located at the origin, with potential energy function Veff(r). In this analogue
problem the force on the test particle is exactly the same as in the real problem,
but in the analogue problem the energy of the test particle is conserved.

We call (6) the “effective” energy because it is really the energy of the analogue
problem, and not the real problem. The true potential energy V (r, t) of the test
particle is defined to be the amount of work we must supply to move the particle
to its present location from some fixed reference point, which we might take to be
r = ∞. We will not bother to write V (r, t) explicitly, since we will not need it, but we
point out that it depends on the time t and on Rmax, and when differentiated gives
the correct gravitational force at any radius. By contrast, Veff(r) gives the correct
force only at the radius of the test particle, r = R(t)ri. The true potential energy
function V (r, t) gives no conservation law, since it is explicitly time-dependent,
which is why the quantity Veff(r) is useful.

To relate E to the total energy of the expanding sphere, we need to integrate over
the sphere to determine its total energy. These integrals are most easily carried out
by dividing the sphere into shells of radius r, and thickness dr, so that each shell
has a volume

dV = 4πr2 dr . (7)

(b) Show that the total kinetic energy K of the sphere is given by

K = cKMR2
max,i

{
1
2
Ṙ2(t)

}
, (8)

where cK is a numerical constant,M is the total mass of the sphere, and Rmax,i

is the initial radius of the sphere. Evaluate the numerical constant cK .
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(c) Show that the total potential energy of the sphere can similarly be written as

U = cUMR2
max,i

{
−4π

3
G
ρi

R

}
. (9)

(Suggestion: calculate the total energy needed to assemble the sphere by bring-
ing in one shell of mass at a time from infinity.) Show that cU = cK , so that
the total energy of the sphere is given by

Etotal = cKMR2
max,iE . (10)

PROBLEM 4: EVOLUTION OF A FLAT UNIVERSE WITH R(t) =
bt1/2 (10 points)

The following problem was taken from Quiz 2 of 1990. Each part counted 10 points,
so the problem was 70% of the whole exam. For the quiz, students were told that
they could express the answers either in terms of the original given variables, or in
terms of the answer to any previous part, whether or not they had answered that part
correctly. For this problem set, however, you should carry out the algebra necessary
to express each answer in terms of given variables.

The following questions all pertain to a flat universe, with a scale factor given
by

R(t) = bt1/2 ,

where b is a constant and t is the time. We will learn later that this is the behavior
of a radiation-dominated universe.

(a) Find the Hubble constant H(t).

(b) Find the horizon distance �hor(t). Your answer should give the horizon distance
in physical units (e.g., centimeters) and not coordinate units (e.g., “notches”).

(c) Suppose a light pulse is emitted by one galaxy at time te, and received at
a second galaxy at time tr. Find the coordinate separation �c between the
two galaxies. (Note that the coordinate separation is a quantity measured in
“notches”, not centimeters.)

(d) Find the physical separation between the two galaxies of part (c), as it would
be measured at the time of observation tr.

(e) Find the physical separation between the two galaxies of part (c), as it would
be measured at the time of emission te.

(f) Find the redshift z of the radiation received by the second galaxy in part (c).

(g) Suppose the first galaxy in part (c) is spherical, with diameter w. Find the
apparent angular size θ (measured from one edge to the other) of the galaxy
as it would be observed from the second galaxy. You may assume that θ � 1.
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PROBLEM 5: EVOLUTION OF A CLOSED, MATTER-DOMINATED
UNIVERSE (5 points)

It was shown in Lecture Notes 5 that the evolution of a closed, matter-
dominated universe can be described by introducing the time-parameter θ, with

ct = α(θ − sin θ) ,

R√
k
= α(1− cos θ) ,

where α is a constant with the units of length.

(a) Use these expressions to find H, the Hubble “constant,” as a function of α and
θ. (Hint: You can use the first of the equations above to calculate dθ/dt.)

(b) Find ρ, the mass density, as a function of α and θ.

(c) Find Ω, where Ω ≡ ρ/ρc, as a function of α and θ.

PROBLEM 6: EVOLUTION OF AN OPEN, MATTER-DOMINATED
UNIVERSE (10 points)

The following problem originated on Quiz 2 of 1992, where it counted 30 points.

The equations describing the evolution of an open, matter-dominated universe
were given in Lecture Notes 5 as

ct = α (sinh θ − θ)

and
R√
κ
= α (cosh θ − 1) ,

where α is a constant with units of length. The following mathematical identities,
which you should know, may also prove useful on parts (e) and (f):

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . . .

a) Find the Hubble “constant” H as a function of α and θ.

b) Find the mass density ρ as a function of α and θ.

c) Find the mass density parameter Ω as a function of α and θ.
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d) Find the physical value of the horizon distance, �p,horizon, as a function of α
and θ.

e) For very small values of t, it is possible to use the first nonzero term of a power-
series expansion to express θ as a function of t, and then R as a function of t.
Give the expression for R(t) in this approximation. The approximation will be
valid for t� t∗. Estimate the value of t∗.

f) Even though these equations describe an open universe, one still finds that Ω
approaches one for very early times. For t � t∗ (where t∗ is defined in part
(e)), the quantity 1−Ω behaves as a power of t. Find the expression for 1−Ω
in this approximation.

Total points for Problem Set 3: 50.


