
M
A
SSA

C
H
U
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T
T
S
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U
T
E

O
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T
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N
O
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P
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D
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P
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8.286:
T
he

E
arly

U
niverse

Septem
ber

19,
2007

P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

3

D
U

E
D

A
T

E
:
T
hursday,

Septem
ber

27,2007

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:Steven

W
einberg,

T
h
e

F
irst

T
h
ree

M
in

u
tes,C

hap-
ter

3;
B
arbara

R
yden,

In
tro

d
u
ctio

n
to

C
o
sm

o
lo

g
y,C

hapter
4.

F
IR

S
T

Q
U

IZ
:
T
he

first
of

three
quizzes

for
the

term
w
ill

be
given

on
T
uesday,

O
ctober

2,
2007.

P
R

O
B

L
E
M

1:
A

C
Y

L
IN

D
R

IC
A

L
U

N
IV

E
R

S
E

(10
points)

T
he

follow
ing

problem
originated

on
Q

uiz
2

of
1994,

w
here

it
counted

30
points.

T
he

lecture
notes

show
ed

a
construction

of
a
N
ew

tonian
m
odelof

the
universe

that
w
as

based
on

a
uniform

,
expanding,

sphere
of

m
atter.

In
this

problem
w
e
w
ill

construct
a
m
odel

of
a
cylindrical

universe,
one

w
hich

is
expanding

in
the

x
and

y
directions

but
w
hich

has
no

m
otion

in
the

z
direction.

Instead
of

a
sphere,

w
e
w
ill

describe
an

infinitely
long

cylinder
of

radius
R

m
a
x
,i ,

w
ith

an
axis

coinciding
w
ith

the
z-axis

of
the

coordinate
system

:

W
e
w
illuse

cylindrical
coordinates,

so

r
= √

x
2
+
y
2

and

�r
=
x
ı̂+
y
̂
;

r̂
=
�rr
,
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w
here

ı̂,
̂,

and
k̂
are

the
usual

unit
vectors

along
the

x,
y,

and
z
axes.

W
e
w
ill

assum
e
that

at
the

initial
tim

e
t
i ,
the

initial
density

of
the

cylinder
is
ρ

i ,
and

the
initialvelocity

of
a
particle

at
position

�r
is

given
by

the
H
ubble

relation

�v
i
=
H

i �r
.

a)
B
y
using

G
auss’

law
of

gravity,
it

is
possible

to
show

that
the

gravitational
acceleration

at
any

point
is

given
by

�g
=

−
A
µr
r̂
,

w
here

A
is

a
constant

and
µ
is

the
totalm

ass
per

length
contained

w
ithin

the
radius

r.
E
valuate

the
constant

A
.

b)
A
s
in

the
lecture

notes,
w
e
let
r(r

i ,t)
denote

the
trajectory

of
a
particle

that
starts

at
radius

r
i
at

the
initial

tim
e
t
i .

F
ind

an
expression

for
r̈(r

i ,t),
ex-

pressing
the

result
in

term
s
of
r,
r
i ,
ρ

i ,
and

any
relevant

constants.
(H

ere
an

overdot
denotes

a
tim

e
derivative.)

c)
D
efining

u(r
i ,t)≡

r(r
i ,t)
r
i

,

show
that

u(r
i ,t)

is
in

fact
independent

of
r
i .

T
his

im
plies

that
the

cylinder
w
illundergo

uniform
expansion,just

as
the

sphere
did

in
the

case
discussed

in
the

lecture
notes.

A
s
before,

w
e
define

the
scale

factor
R
(t)≡

u(r
i ,t).

d)
E
xpress

the
m
ass

density
ρ(t)

in
term

s
of

the
initial

m
ass

density
ρ

i
and

the
scale

factor
R
(t).

U
se

this
expression

to
obtain

an
expression

for
R̈

in
term

s
of

R
,
ρ,and

any
relevant

constants.

e)
F
ind

an
expression

for
a
conserved

quantity
of

the
form

E
=

12
Ṙ

2
+
V
(R

)
.

W
hat

is
V
(R

)?
W

ill
this

universe
expand

forever,
or

w
illit

collapse?

P
R

O
B

L
E
M

2:
A

F
L
A

T
U

N
IV

E
R

S
E

W
IT

H
U

N
U

S
U

A
L

T
IM

E
E
V

O
L
U

-
T

IO
N

(5
points)

C
onsider

a
fl
a
t
universe

w
hich

is
filled

w
ith

som
e
peculiar

form
of

m
atter,

so
that

the
R
obertson–W

alker
scale

factor
behaves

as

R
(t)

=
bt

3
/
4
,



8.286
P

R
O

B
L
E

M
S
E

T
3,

F
A

L
L

2007
p
.
3

w
here

b
is

a
constant.

(a)
For

this
universe,

find
the

value
of

the
H
ubble

“constant”
H
(t).

(b)
F
ind

the
physical

value
of

the
horizon

distance,
�
p
,h

o
riz

o
n (t).

(c)
W

hat
is

the
m
ass

density
of

the
universe,

ρ(t)?
(In

answ
ering

this
question,

you
w
illneed

to
know

that
the

equation
for
Ṙ
/
R
,
E
q.(4.24)

in
L
ecture

N
otes

4,
holds

for
all

form
s
of

m
atter,

w
hile

the
equation

for
R̈
,
E
q.

(4.17),
requires

m
odification

ifthe
m
atter

has
a
significant

pressure.
E
q.(4.17)

is
therefore

not
applicable

to
this

problem
.)

P
R

O
B

L
E
M

3:
E
N

E
R

G
Y

A
N

D
T

H
E

F
R

IE
D

M
A

N
N

E
Q

U
A

T
IO

N
(10

points)

T
he

Friedm
ann

equation,
ṘR 

2

=
8
π3
G
ρ−

k
c
2

R
2
,

(1)

w
as

derived
in

L
ecture

N
otes

4
as

a
first

integral
of

the
equations

of
m
otion.

T
he

equation
w
as

first
derived

in
a
different

form
,

E
=

12
Ṙ

2−
4
π3
G
ρ

i

R
=

constant,
(2)

w
here

k
=

−
2
E
/
c
2.

In
this

form
the

equation
looks

m
ore

like
a
conservation

of
energy

relation,
although

the
constant

E
does

not
have

the
dim

ensions
of

energy.
T
here

are
tw

o
w
ays,

how
ever,

in
w
hich

the
quantity

E
can

be
connected

to
the

conservation
ofenergy.

It
is
related

the
energy

ofa
test

particle
that

m
oves

w
ith

the
H
ubble

expansion,and
it
is
also

related
to

the
totalenergy

of
the

entire
expanding

sphere
of

radius
R

m
a
x ,

w
hich

w
as

discussed
in

L
ecture

N
otes

4
as

a
m
ethod

of
deriving

the
Friedm

ann
equations.

In
this

problem
you

w
illderive

these
relations.

F
irst,

to
see

the
relation

w
ith

the
energy

of
a
test

particle
m
oving

w
ith

the
H
ubble

expansion,
define

a
physical

energy
E

p
h
y
s
by

E
p
h
y
s ≡
m
r
2i E
,

(3)

w
here

m
is

the
m
ass

of
the

test
particle

and
r
i
is

its
initial

radius.
N
ote

that
the

gravitationalforce
on

this
particle

is
given

by

�F
=

−
G
m
M

(r
i )

r
2

r̂
=

−
�∇
V

e
ff (r)

,
(4)

8.286
P

R
O

B
L
E

M
S
E

T
3,

F
A

L
L

2007
p
.
4

w
here

M
(r

i )
is

the
total

m
ass

initially
contained

w
ithin

a
radius

r
i
of

the
origin,

r
is

the
present

distance
of

the
test

particle
from

the
origin,

and
the

“effective”
potential

energy
V

e
ff (r)

is
given

by

V
e
ff (r)

=
−
G
m
M

(r
i )

r
.

(5)

T
he

m
otivation

for
calling

this
quantity

the
“effective”

potential
energy

w
ill

be
explained

below
.

(a)
Show

that
E

p
h
y
s
is

equal
to

the
“effective”

energy
of

the
test

particle,
defined

by

E
e
ff
=

12
m
v
2
+
V

e
ff (r)

.
(6)

W
e
understand

that
E

e
ff
is
conserved

because
it
is
the

energy
in

an
analogue

problem
in

w
hich

the
test

particle
m
oves

in
the

gravitationalfield
ofa

point
particle

ofm
ass

M
(r

i ),located
at

the
origin,w

ith
potentialenergy

function
V

e
ff (r).

In
this

analogue
problem

the
force

on
the

test
particle

is
exactly

the
sam

e
as

in
the

real
problem

,
but

in
the

analogue
problem

the
energy

of
the

test
particle

is
conserved.

W
e
call(6)

the
“effective”

energy
because

it
is
really

the
energy

ofthe
analogue

problem
,
and

not
the

real
problem

.
T
he

true
potential

energy
V
(r,t)

of
the

test
particle

is
defined

to
be

the
am

ount
of

w
ork

w
e
m
ust

supply
to

m
ove

the
particle

to
its

present
location

from
som

e
fixed

reference
point,

w
hich

w
e
m
ight

take
to

be
r
=

∞
.
W
e
w
illnot

bother
to

w
rite

V
(r,t)

explicitly,since
w
e
w
illnot

need
it,but

w
e

point
out

that
it
depends

on
the

tim
e
t
and

on
R

m
a
x ,and

w
hen

differentiated
gives

the
correct

gravitationalforce
at

any
radius.

B
y
contrast,

V
e
ff (r)

gives
the

correct
force

only
at

the
radius

of
the

test
particle,

r
=
R
(t)r

i .
T
he

true
potential

energy
function

V
(r,t)

gives
no

conservation
law

,
since

it
is

explicitly
tim

e-dependent,
w
hich

is
w
hy

the
quantity

V
e
ff (r)

is
useful.

T
o
relate

E
to

the
totalenergy

of
the

expanding
sphere,

w
e
need

to
integrate

over
the

sphere
to

determ
ine

its
totalenergy.

T
hese

integrals
are

m
ost

easily
carried

out
by

dividing
the

sphere
into

shells
of

radius
r,

and
thickness

d
r,

so
that

each
shell

has
a
volum

e
d
V

=
4
π
r
2
d
r
.

(7)

(b)
Show

that
the

totalkinetic
energy

K
of

the
sphere

is
given

by

K
=
c
K
M
R

2m
a
x
,i {

12
Ṙ

2(t) }
,

(8)

w
here

c
K

is
a
num

ericalconstant,
M

is
the

totalm
ass

ofthe
sphere,and

R
m

a
x
,i

is
the

initialradius
of

the
sphere.

E
valuate

the
num

erical
constant

c
K
.
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(c)
Show

that
the

totalpotentialenergy
of

the
sphere

can
sim

ilarly
be

w
ritten

as

U
=
c
U
M
R

2m
a
x
,i {−

4
π3
G
ρ

i

R }
.

(9)

(Suggestion:
calculate

the
totalenergy

needed
to

assem
ble

the
sphere

by
bring-

ing
in

one
shell

of
m
ass

at
a
tim

e
from

infinity.)
Show

that
c
U

=
c
K
,
so

that
the

totalenergy
of

the
sphere

is
given

by

E
to

ta
l =
c
K
M
R

2m
a
x
,i E

.
(10)

P
R

O
B

L
E
M

4:
E
V

O
L
U

T
IO

N
O

F
A

F
L
A

T
U

N
IV

E
R

S
E

W
IT

H
R

(t)
=

b
t
1
/
2

(10
points)

T
he

follow
ing

problem
w
as

taken
from

Q
uiz

2
of

1990.
E
ach

part
counted

10
points,

so
the

problem
w
as

70%
of

the
w
hole

exam
.

For
the

quiz,
students

w
ere

told
that

they
could

express
the

answ
ers

either
in

term
s

of
the

originalgiven
variables,

or
in

term
s
ofthe

answ
er

to
any

previous
part,w

hether
or

not
they

had
answ

ered
that

part
correctly.

For
this

problem
set,

how
ever,

you
should

carry
out

the
algebra

necessary
to

express
each

answ
er

in
term

s
of

given
variables.

T
he

follow
ing

questions
all

pertain
to

a
flat

universe,
w
ith

a
scale

factor
given

by
R
(t)

=
bt

1
/
2
,

w
here

b
is
a
constant

and
t
is
the

tim
e.

W
e
w
illlearn

later
that

this
is
the

behavior
of

a
radiation-dom

inated
universe.

(a)
F
ind

the
H
ubble

constant
H
(t).

(b)
F
ind

the
horizon

distance
�
h
o
r (t).

Y
our

answ
er

should
give

the
horizon

distance
in

physicalunits
(e.g.,centim

eters)
and

not
coordinate

units
(e.g.,“notches”).

(c)
Suppose

a
light

pulse
is

em
itted

by
one

galaxy
at

tim
e
t
e ,

and
received

at
a
second

galaxy
at

tim
e
t
r .

F
ind

the
coordinate

separation
�
c
betw

een
the

tw
o
galaxies.

(N
ote

that
the

coordinate
separation

is
a
quantity

m
easured

in
“notches”,

not
centim

eters.)

(d)
F
ind

the
physical

separation
betw

een
the

tw
o
galaxies

of
part

(c),
as

it
w
ould

be
m
easured

at
the

tim
e
of

observation
t
r .

(e)
F
ind

the
physical

separation
betw

een
the

tw
o
galaxies

of
part

(c),
as

it
w
ould

be
m
easured

at
the

tim
e
of

em
ission

t
e .

(f)
F
ind

the
redshift

z
of

the
radiation

received
by

the
second

galaxy
in

part
(c).

(g)
Suppose

the
first

galaxy
in

part
(c)

is
spherical,

w
ith

diam
eter

w
.
F
ind

the
apparent

angular
size

θ
(m

easured
from

one
edge

to
the

other)
of

the
galaxy

as
it
w
ould

be
observed

from
the

second
galaxy.

Y
ou

m
ay

assum
e
that

θ�
1.
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P
R

O
B

L
E
M

5:
E
V

O
L
U

T
IO

N
O

F
A

C
L
O

S
E
D

,
M

A
T

T
E
R

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E

(5
points)

It
w
as

show
n

in
L
ecture

N
otes

5
that

the
evolution

of
a

closed,
m
atter-

dom
inated

universe
can

be
described

by
introducing

the
tim

e-param
eter

θ,w
ith

ct
=
α
(θ−

sin
θ)
,

R√
k
=
α
(1−

cos
θ)
,

w
here

α
is

a
constant

w
ith

the
units

of
length.

(a)
U
se

these
expressions

to
find

H
,the

H
ubble

“constant,”
as

a
function

of
α
and

θ.
(H

in
t:

Y
o
u

ca
n

u
se

th
e

fi
rst

o
f
th

e
eq

u
a
tio

n
s

a
b
ov

e
to

ca
lcu

la
te
d
θ
/
d
t.)

(b)
F
ind

ρ,the
m
ass

density,
as

a
function

of
α
and

θ.

(c)
F
ind

Ω
,
w
here

Ω
≡
ρ
/
ρ

c ,
as

a
function

of
α
and

θ.

P
R

O
B

L
E
M

6:
E
V

O
L
U

T
IO

N
O

F
A

N
O

P
E
N

,
M

A
T

T
E
R

-D
O

M
IN

A
T

E
D

U
N

IV
E
R

S
E

(10
points)

T
he

follow
ing

problem
originated

on
Q

uiz
2

of
1992,

w
here

it
counted

30
points.

T
he

equations
describing

the
evolution

of
an

open,m
atter-dom

inated
universe

w
ere

given
in

L
ecture

N
otes

5
asct

=
α
(sinh

θ−
θ)

and
R√
κ
=
α
(cosh

θ−
1)
,

w
here

α
is

a
constant

w
ith

units
of

length.
T
he

follow
ing

m
athem

atical
identities,

w
hich

you
should

know
,
m
ay

also
prove

useful
on

parts
(e)

and
(f):

sinh
θ
=
e
θ−
e −

θ

2
,

cosh
θ
=
e
θ
+
e −

θ

2

e
θ
=

1
+
θ1!
+
θ
2

2!
+
θ
3

3!
+
...
.

a)
F
ind

the
H
ubble

“constant”
H

as
a
function

of
α
and

θ.

b)
F
ind

the
m
ass

density
ρ
as

a
function

of
α
and

θ.

c)
F
ind

the
m
ass

density
param

eter
Ω

as
a
function

of
α
and

θ.
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d)
F
ind

the
physical

value
of

the
horizon

distance,
�
p
,h

o
riz

o
n ,

as
a
function

of
α

and
θ.

e)
For

very
sm

allvalues
of
t,it

is
possible

to
use

the
first

nonzero
term

ofa
pow

er-
series

expansion
to

express
θ
as

a
function

of
t,
and

then
R

as
a
function

of
t.

G
ive

the
expression

for
R
(t)

in
this

approxim
ation.

T
he

approxim
ation

w
illbe

valid
for
t�

t ∗.
E
stim

ate
the

value
of
t ∗.

f)
E
ven

though
these

equations
describe

an
open

universe,
one

still
finds

that
Ω

approaches
one

for
very

early
tim

es.
For

t�
t ∗

(w
here

t ∗
is

defined
in

part
(e)),the

quantity
1−

Ω
behaves

as
a
pow

er
of
t.

F
ind

the
expression

for
1−

Ω
in

this
approxim

ation.

T
otal

p
oin

ts
for

P
rob

lem
S
et

3:
50.


