

(squịod
PROBLEM 3: ENERGY AND THE FRIEDMANN EQUATION (10 applicable to this problem.)

(a) For this universe, find the value of the Hubble "constant" $H(t)$.
where b is a constant.
8.286 PROBLEM SET 3, FALL 2007
. 3
is the initial radius of the sphere. Evaluate the numerical constant c_{K}. where c_{K} is a numerical constant, M is the total mass of the sphere, and $R_{\max , i}$

(b) Show that the total kinetic energy K of the sphere is given by

$\iota p_{z} \iota \perp \nabla=\Lambda p$

has a volume

 problem, and not the real problem. The true potential energy $V(r, t)$ of the test

but in the analogue problem the energy of the test particle is conserved.
 pue s!̣t uI $(x){ }^{\circ} \Lambda$ Uo!̣əunf

by
(a) Show that $E_{\text {phys }}$ is equal to the "effective" energy of the test particle, defined explained below.
The motivation for calling this quantity the "effective" potential energy will be

$\frac{l}{\left({ }^{?} \cdot \iota\right) W u n}-=(\iota)^{\Psi^{2} \Lambda}$

potential energy $V_{\text {eff }}(r)$ is given by where $M\left(r_{i}\right)$ is the total mass initially contained within a radius r_{i} of the origin,
r is the present distance of the test particle from the origin, and the "effective"

 (•s.әәдәш!̣иәə ұои '"sәчวұои,"

 (a) Find the Hubble constant $H(t)$ where b is a constant and t is the time. We will learn later that this is the behavior
of a radiation-dominated universe. ${ }^{6} / \mathrm{z}$ tq $=(7) \mathcal{y}$

The following questions all pertain to a flat universe, with a scale factor given to express each answer in terms of given variables
 terms of the answer to any previous part, whether or not they had answered that part

 (squiod 0I) $\underset{\mathbf{z} / \mathrm{\Sigma} \boldsymbol{1} \boldsymbol{q}}{ }$
 $g \cdot d$
8.286 PROBLEM SET 3, FALL 2007
b) Find the mass density ρ as a function of α and θ. a) Find the Hubble "constant" H as a function of α and θ.
 which you should know, may also prove useful on parts (e) and (f)
 were given in Lecture Notes 5 as The equations describing the evolution of an open, matter-dominated universe

The following problem originated on Quiz 2 of 1992, where it counted 30 points. (squịd OI) GSYG

PROBLEM 6: EVOLUTION OF AN OPEN, MATTER-DOMINATED
 (b) Find ρ, the mass density, as a function of α and θ (a) Use these expressions to find H, the Hubble "constant," as a function of α and
θ. (Hint: You can use the first of the equations above to calculate $d \theta / d t$.)
 $(\theta \operatorname{soo}-\mathrm{I}) x=\frac{Y \mu}{y}$
$c t=\alpha(\theta-\sin \theta)$,
 It was shown in Lecture Notes 5 that the evolution of a closed, matter-
 đGLVNINOG-YGLLEN ' G GSOTO V HO NOILOTOAG : 9 NGTGOYd

L007 TTVA ' 8 LAS NAGTGOYd 987•8
Total points for Problem Set 3: 50.

