

$\cdot \frac{z^{\partial}}{z^{m} z^{l}}-\frac{z^{\partial \iota}}{N D Z}-\mathrm{L} \Lambda=\frac{7 p}{\perp p}$ body. Your result should show that

 angular velocity ω.

 Schwarzschild horizon $R_{S}=2 G M / c^{2}$, so we can take $r>R_{S}$. (This restriction 2π is identified with $\phi=0$. We will be concerned only with motion outside the

any spherically symmetric distribution of mass, is given by The Schwarzschild metric, which describes the external gravitational field of
 ter 5
 DUE DATE: Thursday, October 25, 2007

Prof. Alan Guth Physics 8.286: The Early Universe

ХЮОTONHOAL HO GLOLILSNI SLLAASOHOVSSVIN
 uı.оэ әбवu!̣ әч7
Consider the case of a flat (i.e., $k=0$) Robertson-Walker metric, which has
the simple form

 it?
(d) (For 3 points extra credit) Show that circular orbits around a black hole have
a minimum value of the radial coordinate r, which is larger than R_{S}. What is in the Newtonian calculation.] however, it can be seen that the circumference of the circle is equal to $2 \pi r$, as
 the metric, as for example in Problem 1 of Problem Set 4. Since the angular ter of motion. Measured distances, you will recall, are calculated by integrating the Newtonian calculation, since it is not the measured distance from the cenon the orbiting body. Second, r does not really have the same meaning as in which is not the same as the proper time τ that would be measured by a clock has no effect. First, ω has been defined by $d \phi / d t$, where t is a time coordinate chanics. [Note, however, that this does not really mean that general relativity Thus, the relation between r and ω is exactly the same as in Newtonian me$\frac{G M}{r^{2}}$

(c) Show that the above equation implies
 (b) Show that the geodesic equation of motion (Eq. (6.68)) for one of the coordi-
nates takes the form just as motion does.

8.286 PROBLEM SET 5, FALL 2007

$\left(\frac{\Delta p}{\not p}\right) \frac{z^{\iota}}{N D}={ }_{z}\left(\frac{\Delta p}{\phi p}\right) \iota$

 $\left(\frac{d t}{d \tau}\right)^{2}$$r \omega=\frac{G}{r^{2}}$
¿خ!

- 6
k
n
©
'
$\|$
¿Səs[nd әл!̣şəวэns јо
(b) The pulses are received by an observer at \vec{x}_{r}, who measures the time of arrival (•əs[nd ұхәи әчұ јо uо!̣ss!uә

 which describes a static gravitational field. Here i runs from 1 to 3 , with the
identifications $x^{1} \equiv x, x^{2} \equiv y$, and $x^{3} \equiv z$. The function $\phi(\vec{x})$ depends only on the

 would stretch with the expansion of the universe, in the same way that the as a quantum mechanical wave with wavelength $\lambda=h /|\vec{p}|$, then its wavelength

$\underline{\underline{z^{0} / z^{n-}}}=d$
au
is given by

 respect to proper time (i.e., $d x / d \tau$) falls off as $1 / R^{2}(t)$.

 axis. (Note that the galaxies are on the average at rest in this system, but one can rather than polar coordinates. Now consider a particle which moves along the x Since the spatial metric is flat, we have the option of writing it in terms of Cartesian $\varepsilon \cdot d$
8.286 PROBLEM SET 5, FALL 2007

$\frac{z^{\perp p}}{{ }_{2} x_{z} p}$

when repeated. Calculate an explicit expression for
where the Greek indices ($\mu, \nu, \lambda, \sigma$, etc.) run from 0 to 3 , and are summed over
 with the particle.) The trajectory is described by the geodesic equation ภu!

$\frac{{ }^{2} L \nabla}{{ }^{\iota} L \nabla}=z+\mathrm{I}$
${ }^{\iota} L \nabla$
the redshift z, defined by
8.286 PROBLEM SET 5, FALL 2007

