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PROBLEM SET 8

DUE DATE: Tuesday, November 27, 2007

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology,
Chapter 8 (Dark Matter). Also “Inflation and the New Era of High-Precision
Cosmology,” by Alan Guth, available at

http://web.mit.edu/physics/alumniandfriends/physicsjournal_fall_02_cosmology.pdf.

For this week it will be sufficient to read the first 5 pages, but it may be more
coherent for you to read all 12 pages at once. In addition, you may find Ryden’s
Chapter 10 useful for understanding nucleosynthesis, but it will not be tested
independently.

PROBLEM 1: BIG BANG NUCLEOSYNTHESIS (8 points)

The calculations of big bang nucleosynthesis depend on a large number of
measured parameters. Below you are asked to qualitatively describe the effects of
changing some of these parameters. Include a sentence or two to explain each of
your answers.

(a) Suppose an extra neutrino species is added to the calculation. Would the
predicted helium abundance go up or down?

(b) Suppose the weak interactions were stronger than they actually are, so that
the thermal equilibrium distribution between neutrons and protons were main-
tained until kT ≈ 0.25 MeV. Would the predicted helium abundance be larger
or smaller than in the standard model?

(c) Suppose the proton-neutron mass difference were larger than the actual value
of 1.29 MeV/c2. Would the predicted helium abundance be larger or smaller
than in the standard calculation?

(d) The standard theory of big bang nucleosynthesis assumes that the matter in
the universe was distributed homogeneously during the era of nucleosynthesis,
but the alternative possibility of inhomogeneous big-bang nucleosynthesis has
been discussed since the 1980s. Inhomogeneous nucleosynthesis hinges on the
hypothesis that baryons became clumped during a phase transition at t ≈ 10−6

second, when the hot quark soup converted to a gas of mainly protons, neu-
trons, and in the early stages, pions. The baryons would then be concentrated
in small nuggets, with a comparatively low density outside of these nuggets.
After the phase transition but before nucleosynthesis, the neutrons would have
the opportunity to diffuse away from these nuggets, becoming more or less uni-
formly distributed in space. The protons, however, since they are charged, in-
teract electromagnetically with the plasma that fills the universe, and therefore
have a much shorter mean free path than the neutrons. Most of the protons,
therefore, remain concentrated in the nuggets. Does this scenario result in an
increase or a decrease in the expected helium abundance?
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PROBLEM 2: THE DEUTERIUM BOTTLENECK (10 points)

The “deuterium bottleneck” plays a major role in the description of big bang
nucleosynthesis: all of the nuclear reactions involved in nucleosynthesis depend
on deuterium forming at the start, but deuterium does not become stable until
the temperature reaches a rather low value. In this problem we will explore the
statistical mechanics of the deuterium bottleneck.

An ideal gas of classical nonrelativistic particles of type X , in thermal equilib-
rium, has a number density given by

nX = gX

(
mXkT

2πh̄2

)3/2

exp
(
−mXc2

kT

)
exp

(µX

kT

)
. (1)

Here gX is the number of spin degrees of freedom associated with the particle (like
the factor g = 2 that we encountered with photons), mX is the mass of the particle,
T is the temperature, and µX is the chemical potential of the particle. (h̄ = h/2π,
c, and k have their usual meanings: Planck’s constant, the speed of light, and the
Boltzmann constant.) You may or may not be familiar with chemical potential, but
it will suffice for you to know that it is a concept introduced to treat quantities that
are conserved or at least effectively conserved over the time scales of interest. Such
quantities can have any value in thermal equilibrium, since the value is determined
by the initial conditions and cannot be changed. For each such conserved quantity
Qi one introduces a chemical potential µi. The chemical potential of particle X is
given by

µX =
∑

i

µiq
X
i , (2)

where qX
i is the amount of quantity Qi contained in one particle of type X . The

chemical potentials µi are then adjusted to produce the desired values for each of
the conserved quantities Qi. (In the grand canonical ensemble, which gives the
probability distribution that leads to Eq. (1), each possible state for the system as
a whole is assigned a probability proportional to exp(−E/kT ) exp(

∑
i µiQi), where

E is the energy of the state and Qi is the amount of quantity i in the state.) Note
that Eq. (2) implies that for any allowed reaction, such as

A + B ←→ C , (3)

we are guaranteed that
µA + µB = µC , (4)

since the conserved quantities must balance on the two sides of the equation.
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(a) I mentioned in lecture that our textbook writes Eq. (1) incorrectly, omitting
the chemical potential factor. See for example Eqs. (10.11) and (10.12). The
author does, however, have a footnote about this (p. 156), which concludes
that “in most cosmological contexts, as it turns out, the chemical potential is
small enough to be safely neglected.” We can check this statement by using
the author’s formula to calculate the proton density at 3 minutes into the big
bang, at the time of Steven Weinberg’s Fifth Frame, from chapter 5 of The First
Three Minutes. At that time the temperature was T = 109 K. To compare with
the right answer, we make use of the fact that the ratio of the number density
nb of baryons to the number density nγ of photons is estimated from WMAP
data* as

η ≡ nb

nγ
= (6.1± 0.2)× 10−10 . (5)

According to Weinberg, at that time 14% of the baryons were neutrons, with
86% protons. At the risk of appearing impertinent toward the author (but
physicists are known for their impertinence), I will phrase the question this
way: By how many kilo-orders of magnitude is the author’s formula for np in
error?† (Be prepared to have your calculators overflow — if they do, calculate
the logarithm of the answer.)

(b) For deuterium production, the relevant reaction is

n + p←→ D , (6)

so Eq. (4) tells us that µn + µp = µD. This equality implies that if we form
the ratio

nD

np nn
, (7)

expressing each number density as in Eq. (1), then the chemical potential fac-
tors will cancel out. (This is how the formula is normally used, and this is
how Ryden uses it on p. 180. From here on her treatment is correct, but we
will proceed with slightly more detail.) To describe the bookkeeping for the
reaction of Eq. (6), we need to define our variables. I am using nn, np, and
nD to mean the number densities of free neutrons, free protons, and deuterium
nuclei. nb denotes the total baryon number density, so

nb = nn + np + 2nD . (8)

* D.N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three
year results: implications for cosmology,” Astrophys. J. Suppl. 170, 377 (2007),
also available at http://arxiv.org/abs/astro-ph/0603449. They actually write it as
6.116+0.197

−0.249 × 10−10, but I don’t think that we have any need for the extra digits.
† I have exchanged email with Ryden about this, and she said she would fix it

in the next edition.
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Finally, I will use nTOT
n and nTOT

p to denote the total number densities of
neutrons and protons respectively, whether free or bound inside deuterium.
We assume that deuterium production happens fast enough so that there is no
further change in the neutron-proton balance while deuterium if forming, so
the ratio

f ≡ nTOT
n

nb
(9)

is fixed. We will describe the extent to which the reaction has proceeded by
specifying the fraction x of neutrons that remain free,

x ≡ nn

nTOT
n

. (10)

Using these definitions, write the equation that equates the ratio nD/(np nn)
to a function of temperature, using Eq. (1) for each of the number densities.
The deuteron is spin-1, with g = 3, and the proton and neutron are each spin-
1
2
, with g = 2. You may approximate mn = mp = mD/2. Manipulate this

formula so that it has the form

F (η, f, x) = G(T ) ,

where F and G are functions that you must determine. You will need the
binding energy of deuterium,

B = (mp + mn −mD)c2 ≈ 2.22 MeV. (11)

This formula determines x as a function of T , or vice versa, but we will not try
to write the function explicitly in either case.

(c) Using your result in part (b), and taking f = 0.14 from Weinberg’s book, find
the value of x, the fraction of neutrons that have been bound in deuterium, at
the time of the Fifth Frame, when T = 109 K. You will probably want to solve
the equation numerically. Two significant figures will be sufficient.

(d) Again using your result from part (b), and assuming that f = 0.14 is still
accurate, find the temperature at which x = 1

2 , i.e., the temperature for which
half of the neutrons have become combined into deuterium. Again you will
presumably find the answer numerically, and 2 significant figures will be suffi-
cient. What is the value of kT at this temperature. Qualitatively, what feature
of the calculation causes this number to be small compared to B.



8.286 PROBLEM SET 8, FALL 2007 p. 5

PROBLEM 3: THE HORIZON PROBLEM (8 points)

The success of the big bang predictions for the abundances of the light elements
suggests that the universe was already in thermal equilibrium at one second after
the big bang. At this time, the region which later evolves to become the observed
universe was many horizon distances across. Try to estimate how many. You may
assume that the universe is flat.

PROBLEM 4: THE FLATNESS PROBLEM (7 points)

Although we now know that Ω0 = 1 to an accuracy of a few percent, let us
pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second
after the big bang (about the time of the grand unified theory phase transition), Ω
must have been extraordinarily close to one. Writing Ω = 1− δ , estimate the value
of δ at t = 10−37 sec (using the standard cosmological model).


