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PROBLEM SET 9

DUE DATE: Tuesday, December 4, 2007

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology,
Chapters 9 (The Cosmic Microwave Background) and 11 (Inflation and the
Very Early Universe), excluding Section 9.3. (Section 9.3 gives a quantitative
description of hydrogen recombination, which involves physical principles very
similar to the deuterium formation problem that we discussed in lecture. You
will find this section interesting, but it is not required.)

PROBLEM 1: EXPONENTIAL EXPANSION OF THE INFLATION-
ARY UNIVERSE (7 points)

Recall that the evolution of a Robertson-Walker universe is described by the
equation (

Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
.

Suppose that the mass density ρ is given by the constant mass density ρf of the
false vacuum. For the case k = 0, the solution is given simply by

R(t) = const eχt,

where

χ =

√
8π
3
Gρf

and const is an arbitrary constant. Find the solution to this equation for an arbi-
trary value of k. Be sure to consider both possibilities for the sign of k. You may
find the following integrals useful:∫

dx√
1 + x2

= sinh−1 x

∫
dx√
1− x2

= sin−1 x .

∫
dx√
x2 − 1

= cosh−1 x .

Show that for large times one has

R(t) ∝ eχt

for all choices of k.
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PROBLEM 2: THE HORIZON DISTANCE FOR THE PRESENT UNI-
VERSE (10 points)

We have not discussed horizon distances since the beginning of Lecture Notes
5, when we found that

�p,horizon(t) = R(t)
∫ t

0

c

R(t′)
dt′ . (1)

This formula was derived before we discussed curved spacetimes, but the formula
is valid for any Robertson-Walker universe, whether it is open, closed, or flat.

(a) Show that the formula above is valid for closed universes. Hint: write the
closed universe metric as it was written in Lecture Notes 8,

ds2 = −c2 dt2 + R2(t)
k

{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
,

where ψ is related to the usual Robertson-Walker coordinate r by

sinψ ≡
√
k r .

(b) The evaluation of the formula depends of course on the form of the function
R(t), which is governed by the Friedmann equations. For the WMAP 3-year
best fit to the parameters,

H0 = 73.5 km · s−1 ·Mpc−1

Ωm = 0.237

Ωvac = 0.763

Ωr = 7.7× 10−5 (Tγ,0 = 2.725K) ,

find the current horizon distance, expressed both in light-years and in Mpc.
Hint: find an integral expression for the horizon distance, similar to Eq. (8.23a)
for the age of the universe. Then do the integral numerically.

Note that the model for which you are calculating does not explicitly include
inflation. If it did, the horizon distance would turn out to be vastly larger. By
ignoring the inflationary era in calculating the integral of Eq. (1), we are finding
an effective horizon distance, defined as the present distance of the most distant
objects that we can in principle observe by using only photons that have left
their sources after the end of inflation. Photons that left their sources earlier
than the end of inflation have undergone incredibly large redshifts, so it is
reasonable to consider them to be completely unobservable in practice.
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PROBLEM 3: THE INFLATIONARY SOLUTION TO THE HORI-
ZON/HOMOGENEITY PROBLEM (10 points)

In this problem we will calculate how much inflation is needed to explain the
observed homogeneity of the universe. To make the calculation well-defined, we will
adopt a simple description of how inflation works. Although we are trying to explain
the homogeneity of the universe, to make the problem tractable we will need to
assume that from the onset of inflation, at a time we call ti, the universe was already
very nearly homogeneous, so that we can approximate its evolution using simple
equations. We will in fact assume that from time ti onward the evolution equations
can be approximated by those of a homogeneous, isotropic, and flat universe. We
will assume that inflation is driven by a false vacuum with a fixed mass density ρf ,
which we will describe by relating it to a parameter Ef by

ρf ≡ E4
f

h̄3c5
, (1)

where Ef has the units of energy. To discuss inflation at the energy scale of grand
unified theories, we will write Ef as

Ef ≡ E16 × 1016 GeV , (2)

where E16 is a dimensionless number that will we will assume is of order 1. The
Hubble parameter during inflation is then dictated by the Friedmann equation,

H2
i =

8π
3
Gρf . (3)

While we are assuming enough homogenity to proceed with the calculation, we
still want to assume that the high precision homogeneity of the observed universe
(like the 1 part in 105 uniformity of the CMB) was not part of the initial conditions,
but must be explained in terms of the evolution of the universe. The homogeneity is
created first on short distance scales, and the length scale of homogeneity, denoted
by rh(t), increases with time. At the onset of inflation we assume that normal
thermal equilibrium processes have already smoothed the universe on scales smaller
than the Hubble length, so we write

rh(ti) ≈ βcH−1
i , (4)

where β is a dimensionless constant with β <∼ 1.

We assume that inflation continues long enough so that the universe expands
by a factor Z, where we will be trying to calculate the minimum value of Z. We
will assume for simplicity that inflation ends suddenly, at time te. Reheating is
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then assumed to occur instantly, with the mass density ρf of the false vacuum being
converted to thermal equilibrium radiation, described as in Lecture Notes 7 by

ρRH = gRH
π2

30
(kTRH)4

h̄3c5
, (5)

where gRH reflects the total number of particles that are effectively massless at the
energy scale of reheating. For a grand unified theory one might take gRH ≈ 300,
but fortunately the value of this highly uncertain number will not have much effect
on the answer. The length scale of homogeneity is stretched by inflation to

rh(te) = Zrh(ti) , (6)

and we will assume that rh(t) continues to evolve only by being stretched with the
scale factor. The length scale today is then given by

rh(t0) =
R(t0)
R(te)

Zrh(ti) . (7)

To evaluate R(t0)/R(te), you can use the conservation of entropy, R3s = constant,
where s is the entropy density, which is very accurate from the end of inflation to
the present. For the current entropy density, include photons and neutrinos, taking
into account the temperature difference Tν/Tγ = (4/11)1/3.

Problem: Find the minimum value of Z such that

rh(t0) > �p,horizon(t0) , (8)

using the value of �p,horizon(t0) calculated in Problem 2. (If you did not do
Problem 2, you could use instead 3ct0, the answer for a flat matter-dominated
universe, with t0 ≈ 13.7 billion years.) Assume the parameters of the WMAP
3-year best fit described in Problem 2, and write your answer for Zmin as
a function of E16, gRH, and β. Since inflation is an exponential process, it
is useful to also express the numerical answer in terms of Nmin ≡ lnZmin,
which is the minimum number of e-foldings of inflation. (An “e-folding” refers
to a period of one Hubble time, ∆t = H−1, so the scale factor expands by
eH∆t = e1 = e.)
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PROBLEM 4: HUBBLE CROSSINGS DURING INFLATION (10
points)

In the description of density fluctuations in inflationary models, the small am-
plitude of the fluctuations implies that they can be accurately described by linear
perturbation theory. In this treatment the fluctuations can be expanded in modes
of definite wavelength, and the interactions of one wavelength with another are
ignored. Thus, we describe the perturbations one mode at a time. As the mode
evolves the wavelength in comoving coordinates is fixed, so the physical wavelength
of a mode grows as the universe expands.

The behavior of a mode changes qualitatively, depending on whether the phys-
ical wavelength is smaller or larger than the Hubble length, cH−1. It is therefore
important to keep track of when a given mode crosses the Hubble length, and there-
fore changes its behavior. A typical mode of observational interest has a wavelength
today that is small compared to the Hubble length, but nonetheless such modes have
spent a significant part of their life with a wavelength larger than the Hubble length.

During inflation the Hubble expansion rate is either constant or very slowly
varying, so the Hubble length can be considered fixed. The physical wavelength of
a given mode, however, grows with the scale factor, and hence grows exponentially.
With this rapid growth, a typical mode with a wavelength shorter than the Hubble
length will soon cross the Hubble length. This event is called the first Hubble
crossing. Since the physical wavelength is growing exponentially, it rapidly becomes
much larger than the Hubble length.

Since the physical wavelength of a mode grows monotonically as the universe
expands, a little thought is required to understand how a mode with a wavelength
larger than the Hubble length can at a later time have a wavelength which is smaller
than the Hubble length. The key, of course, is that the Hubble length also changes
with time. In a matter-dominated flat universe, for example, the physical wave-
length of a specific mode grows with the scale factor, R(t) ∝ t2/3. The Hubble
expansion rate H = Ṙ/R = 2/(3t), so the Hubble length is given by 3

2ct , which
grows faster than R(t). Thus the Hubble length catches up with the wavelengths
of modes that are outside the Hubble length, so each mode goes through a second
Hubble crossing, at which the wavelength changes from outside to inside the Hubble
length.

As will be discussed in lecture, the properties of the fluctuation mode are largely
determined at first Hubble crossing, so it is important to know how to find when
this occurs. In this problem we will calculate when wavelengths that are in the
vicinity of 1 Mpc today underwent their first Hubble crossing. We will use the same
model of instantaneous reheating that was used in the previous problem.
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Let tH1(λ) denote the time of first Hubble crossing for a mode with physical
wavelength today equal to λ. The quantity that we will actually calculate is

ZH1(λ) ≡ R(te)
R
(
tH1(λ)

) , (9)

where ZH1(λ) can be described as the inflationary factor that occurs after the mode
undergoes first Hubble crossing. Then

NH1(λ) ≡ lnZH1(λ) (10)

is the number of e-foldings of inflation that occur after first Hubble crossing.

Since we wish to express ZH1 in terms of the physical wavelength at the present
time t0, it is useful to rewrite Eq. (10) as the product of two factors:

ZH1(λ) =
R(te)
R(t0)

R(t0)
R
(
tH1(λ)

) . (11)

Note that the first factor appeared in Eq. (7) of the previous problem, so you have
already thought about it. You need to figure out how to evaluate the second factor.

Problem: Find ZH1(λ), using the same description of the inflationary model
as in the previous problem. Define the dimensionless parameter

λ̃ ≡ λ

1 Mpc
, (12)

and express your answer in terms of λ̃, E16, and gRH. Again it is useful to
explicitly write the answer in terms ofNH1 ≡ lnZH1(λ̃), which can be described
as the number of e-foldings of inflation that happen after the mode described
by λ̃ has undergone first Hubble crossing.

Total points for Problem Set 9: 37


