MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Physics 8.286: The Early Universe
September 9, 2009

PROBLEM SET 1

DUE DATE: Tuesday, September 15, 2009
READING ASSIGNMENT: The First Three Minutes, Chapters 1 and 2.

PROBLEM 1: NONRELATIVISTIC DOPPLER SHIFT, SOURCE AND OBSERVER IN MOTION

Consider the Doppler shift of sound waves, for a case in which both the source and the observer are moving. Suppose the source is moving with a speed v_{s} relative to the air, while the observer is receding from the source, moving in the opposite direction with speed v_{o} relative to the air. Calculate the Doppler shift z.

PROBLEM 2: THE TRANSVERSE DOPPLER SHIFT

Consider the Doppler shift observed by a stationary observer, from a source that travels in a circular orbit of radius R about the observer. Let the speed of the source be v_{s}.

(a) If the wave in question is sound, and both the source speed v_{s} and the wave speed u are very small compared to the speed of light c, what is the Doppler shift z ?
(b) If the wave is light, traveling with speed c, and v_{s} is not necessarily small compared to c, what is the Doppler shift z ? In answering this part of the question, you will want to keep in mind the following facts from special relativity:
(1) TIME DILATION: Any clock which is moving at speed v relative to a given reference frame will appear (to an observer using that reference frame) to run slower than normal by a factor denoted by the Greek letter γ (gamma), and given by

$$
\gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta \equiv v / c
$$

(2) LORENTZ-FITZGERALD CONTRACTION: Any rod which is moving at a speed v along its length relative to a given reference frame will appear (to an observer using that reference frame) to be shorter than its normal length by the same factor γ. A rod which is moving perpendicular to its length does not undergo a change in apparent length.

Uncontracted
(3) RELATIVITY OF SIMULTANEITY: Suppose a rod which has rest length ℓ_{0} is equipped with a clock at each end. The clocks can be synchronized in the rest frame of the system by using light pulses. If the system moves at speed v along its length, then the trailing clock will appear to read a time which is later than the leading clock by an amount $\beta \ell_{0} / c$. If, on the other hand, the system moves perpendicular to its length, then the synchronization of the clocks is not disturbed.

Later

PROBLEM 3: A HIGH-SPEED MERRY-GO-ROUND

Now consider the Doppler shift as it would be observed in a high-speed "merry-go-round." Four evenly-spaced cars travel around a central hub at speed v, all at a distance R from a central hub. Each car is sending waves to all three of the other cars.

(a) If the wave in question is sound, and both the source speed v and the wave speed u are very small compared to the speed of light c, with what Doppler shift z does a given car receive the sound from (i) the car in front of it; (ii) the car behind it; and (iii) the car opposite it?
(b) In the relativistic situation, where the wave is light and the speed v may be comparable to c, what is the answer to the same three parts (i)-(iii) above?

