b is an arb	7	In this probl	In this prohl		NTRONICT		on how much wo	points. For this	PROBLEM PO				τC		28	0		21 Septe	MOI			in the mater	Problem Set	with Proble	days after th	Set 3 will be	I recommend	PLANNING A	Chapters 1-	READING A		DHE DATE: T			Physics 8.286: T Prof Alan Guth	MA
itrary cone		em set we v	on of the			F.	rk I expect	problem se	OINT CR		- in	Qui	6	i	29 PS	2		mber 22	T			lal covered	s 1 through	m Set 3 wi	ns set is di	relatively s	d that you i	HEAD: A		SSIGNMI	acoacy, per	hesday Ser			he Early U	SSACHUS
a(t		vill conside			THE DR	-	the proble	t the num	EDIT: In		class	z 1	7		2 due 3	,		2	UES	SEPTE		on Quiz 1	a 3, includi	ll be Weir	ie. If you	short, but $\frac{1}{1}$	finish it by	lthough th		ENT: Ba	Controct 20	stemher 20	PROB		niverse	ETTS INS Physic
$) = bt^{2/3}$,	1.2/3	er a univer			ORLEM 0		em to invo	ber of poi	ı Problem						0			లు	WED	MBER/O		, on Tuesc	ing the rea	iberg, The	want to re	will be due	this comi	iis problen		rbara Ryc	, 2000.	0000	LEM SI	2		STITUTE s Departm
		se in which t	an in mhich t	JET			lve.	nts per prob	Set 1 each				8		1 October PS 3 due			24	THURS	CTOBER		lay, Uctober	ding assignn	First Three	ead anead, the	e on Thursda	ng Friday, Se	ı set is not dı		len, Introdu			ET 2			OF TECHN ent
•		he scale factor is give	he coole featon is sime					lem varies, dependin	problem was worth				9		2	>	Finish PS 2	25	FRI			6.	nents, will be include	• Minutes, Chapter 5	ne reading assignmen	y, October 1, just tw	eptember 25 . Probler	ue until September 29		iction to Cosmology					September 20, 200	OLOGY
Until rece was endec	in the ra	[4,5]. Moj	based on o	was high	was also a	have beer	determined	observed on redshifts "n	troscopy, ide	as mup.//ar ‡ Note on]	as http://arXiv	τος (14 σεριεπι † K. Kodaira	* Iye et al., "		ies began to fo	conditions in	of research	chift ohierte	ticle on p. 128	on the right,	reliable. Ric	ment of the re	galaxy was ant	and $0.28 \text{ m} 2$		was ошу д. 4.897 in 19	rapidly. In	The ability c	z = 6.58, di	The previo	using the 8	covery of this	z. As a conc well-determin	tivistic matter.	the behavior of a	8.286 PROBLEM S
ntly the highest known redshifts were al with the $z=6.58$ redshift galaxy discov	ange of $8.5 < z < 10.4$, but these result	recently atronomers have found a num	only one spectral line, and the result has b	ly magnified by gravitational lensing $[3]$.	report of a spectroscopically determined	seen with photometrically determined r	by measuring the light that comes the	hotometrically," which means that broken	ntifying individual lines and comparin	High Redshift Searches: The z=6.58	$\cos \frac{1}{2} \cos $	ber 14 2000). et al., Publ. Astron. Soc. Japan 5	A galaxy at a redshift $z = 6.96$," N		orm.‡	the universe when the first galax-	, as astronomers try to sort out the	continues to be an exciting area	of the same issue of Nature as	which was published in a News ar-	hard McMahon compiled the graph	dshift was later found to be un- $\frac{1}{\alpha}$	nounced in 1999, but the measure-	002. The discovery of a $z = 0.08$		94. and 4.92 in 1998. 5.34 in 2000. pt	s It man 1 01 in 1088 1 73 in 1009 R	of astronomers to observe objects at i	scovered in 2003 by Kodaira et al. of	us record-holder was the galaxy $J132$.2-meter Subaru Telescope at the sum	galaxy was announced in September	rete example we will consider the m) we will suppose that a distant g	flat universe with a mass densit	ET 2, FALL 2009

8.286 PROBLEM SET 2, FALL 2009 p. 3	8.286 PROBLEM SET 2, FALL 2009 p. 4
PROBLEM 1: DISTANCE TO THE GALAXY (5 points)	PROBLEM 5: APPARENT ANGULAR SIZES (10 points)
Let t_0 denote the present time, and let t_e denote the time at which the light that we are currently receiving was emitted by the galaxy. In terms of these quantities, find the present value of the physical distance ℓ_p between this distant galaxy and us.	Now suppose for simplicity that the galaxy is spherical, and that its physical diameter was w at the time it emitted the light. (The actual galaxy is seen as an unresolved point source, so we don't know it's actual size and shape.) Find the apparent angular size θ (measured from one edge to the other) of the galaxy as it
PROBLEM 2: TIME OF EMISSION (5 points)	would be observed from Earth today. Express your answer in terms of w, z, H_0 , and z . Voir may accurate that $\theta \gg 1$. Compare your answer to the apparent angular
Express the redshift z in terms of t_0 and t_e . Find the ratio t_e/t_0 for the $z = 6.96$ galaxy.	size of a circle of diameter w in a static Euclidean space, at a distance equal to the present value of the physical distance to the galaxy, as found in Problem 1. [Hint:
PROBLEM 3: DISTANCE IN TERMS OF REDSHIFT z (5 points)	draw diagrams which trace the light rays in the comoving coordinate system. If you have it right, you will find that θ has a minimum value for $z = 1.25$, and that θ
Express the present value of the physical distance in terms of the present value of the Hubble expansion rate H_0 and the redshift z. Taking $H_0 \approx 72$ km-sec ⁻¹ -Mpc ⁻¹ , how far away is the galaxy? Express your answer both in light-years and in Mpc.	increases for larger z . This phenomenon makes sense if you think about the distance to the galaxy at the time of emission. If the galaxy is very far away today, then the light that we now see must have left the object very early, when it was rather close to us!
PROBLEM 4: SPEED OF RECESSION (5 points)	
Find the present rate at which the physical distance ℓ_p between the distant galaxy and us is changing. Express your answer in terms of the redshift z and the speed of light c , and evaluate it numerically for the case $z = 6.96$. Express your answer as a fraction of the speed of light. [If you get it right, this "fraction" is greater than one! Our expanding universe violates special relativity, but is consistent with general relativity.]	
1. Kneib, J., et al., "A Probable $z \sim 7$ Galaxy Strongly Lensed by the Rich Cluster A2218: Exploring the Dark Ages," The Astrophysical Journal (2004), vol. 607, Issue 2, pp. 697-703.	$x = l_c$
2. Egami, E., et al., "Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the $z \sim 7$ Galaxy Strongly Lensed by A2218," The Astro- physical Journal (2005), vol. 618, Issue 1, pp. L5-L8.	
 a. Fend et al., ISAAC/ VL1 observations of a lensed galaxy at z = 10.0, Astronomy and Astrophysics (2004), vol. 416, p. L35. 4. S.J. Weatherly et al., "Reanalysis of the spectrum of the z = 10 galaxy," Astron. Astrophys., vol. 428 (2004), p. L29, arXiv:astro-ph/0407150v3 	
 5. M.I.N. Bremer et al., "Gemmi H-band imaging of the field of a z = 10 candidate," Astrophys. J., vol. 615 (2004), pp. L1-L4, arXiv:astro-ph/0409485. 6. Stark, D. et al., "A Keck survey for gravitationally lensed Lyα emitters in the redshift range 8.5 < z < 10.4: New constraints on the contribution of low-luminosity sources to cosmic reionization," The Astrophysical Journal (2007), vol. 663, pp. 10-28 	
7. Fan, Xiahoui et al., "A Survey of $z > 5.7$ Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at $z > 6$," The Astronomical Journal (2003), vol. 125, Issue 4, pp. 1649-1659.	

8.286 PROBLEM SET 2, FALL 2009

PROBLEM 6: RECEIVED RADIATION FLUX (10 points)

At the time of emission, the galaxy had a power output P (measured, say, in ergs/sec) which was radiated uniformly in all directions. This power was emitted in the form of photons. What is the radiation energy flux J from this galaxy at the earth today? Energy flux (which might be measured in ergs-cm⁻²-sec⁻¹) is defined as the energy per unit area per unit time striking a surface that is orthogonal to the direction of energy flow. The easiest way to solve this problem is to consider the trajectories of the photons, as viewed in comoving coordinates. You must calculate the rate at which photons arrive at the detector, and you must also use the fact that the energy of each photon is proportional to its frequency, and is therefore decreased by the redshift. You may find it useful to think of the detector as a small part of a sphere that is centered on the source, as shown in the following diagram:

