
 the z-axis of the coordinate system:
 II! construct a model of a cylindrical universe, one which is expanding in the x and y

 (squıod OI) GSHGAIN TVOIYGNITXD V :I N'HTGOUd

ε Ias natgoyd

Prof. Alan Guth
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 ${ }^{\star} / \varepsilon^{\ell} q=(\neq) \quad$ 'quezsuoo e sị q әләчм

 What is $V(a)$? Will this universe expand forever, or will it collapse? Find an expression for a conserved quantity of the form

$$
E=\frac{1}{2} \dot{a}^{2}+V(a) .
$$

What is $V(a)$? Will this universe expand forever, or will a, ρ, and any relevant constants. scale factor $a(t)$. Use this expression to obtain an expression for \ddot{a} in terms of d) Express the mass density $\rho(t)$ in terms of the initial mass density ρ_{i} and the
 will undergo uniform expansion, just as the sphere did in the case discussed in show that $u\left(r_{i}, t\right)$ is in fact independent of r_{i}. This implies that the cylinder $\frac{?^{l} l}{\left(7^{6 ?} \cdot l\right) \cdot l} \equiv\left(7^{6!} \cdot\right) n$ (әл!̣ұел!мәр әш!̣ е sәұоиәр ұорләло

 $\cdot \frac{l}{n^{\prime}} \frac{l}{n_{V}}-\underline{b}$ Кq шәл!̣̊ s!̣ ұи!̣od Кие ұе шо!̣ұеләәәәэе

 8.286 PROBLEM SET 3, FALL 2009

Kq (e) 7еч7 мочS explained below.

Total points for Problem Set 3: 25.

(c) Show that the total potential energy of the sphere can similarly be written as is the initial radius of the sphere. Evaluate the numerical constant c_{K}. where c_{K} is a numerical constant, M is the total mass of the sphere, and $R_{\text {max }, i}$

$\iota p_{z^{\prime}} \quad \nu \overline{ }=\Lambda p$

has a volume

