

DUE DATE: Tuesday, October 20, 2009
历 工'GS N'GTGOYd

Prof. Alan Guth
 Physics Department

ХЮОTONHOGL HO ALOLILSNI SLLASOHOVSSVIN

 Eq. (6.27) of Lecture Notes 6 , evaluated at some particular time t, with $R \equiv a(t)$. to 1 if $k=1$, and otherwise from 0 to ∞. (This is the Robertson-Walker metric of where $\phi=2 \pi$ and $\phi=0$ are identified. r is a radial coordinate, which runs from 0

(5 points)

the time at which the light was emitted.) (By lookback time, one means the difference between the time of observation t_{0} and Niwde is able to see? What is the lookback time to an object with this blueshift? his horizon, what is the most blueshifted (i.e., most negative) value of z that Dr. $t=t_{\text {Crunch }}=2 \pi \alpha / c$? Assuming that Dr. Niwde is able to observe all objects within

 Ω_{0}. He finds, of course, that $H_{0}<0$ (because he is in the contracting phase) and present values of the Hubble expansion rate, H_{0}, and the mass density parameter, have blueshifts $(-1 \leq z<0)$ proportional to their distance. He then measures the when $\theta>\pi$), an astronomer named Elbbuh Niwde discovers that nearby galaxies

 (stulod 0I) © TSYGAINの GALVNINOC

and You will want the following integrals: why we can take $k= \pm 1$, see the section called "Units" in Lecture Notes 4,)

 from the origin to the circle $\left(r=r_{0}\right)$, along a trajectory of $\theta=\pi / 2$ and $\phi=$
 integrate

or equivalently by the angular coordinates

Total points for Problem Set 4: 50.

$$
\begin{aligned}
& \text { By comparing Eq. }(6.14) \text { with }(6.9) \text {, the metric for the surface of a sphere, one } \\
& \text { can see that as long as } \psi \text { is held fixed, the metric for varying } \theta \text { and } \phi \text { is the same as } \\
& \text { that for a spherical surface of radius } a \sin \psi \text {. Thus the area of the spherical surface } \\
& \text { is } 4 \pi a^{2} \sin ^{2} \psi \text {. To find the volume, multiply this area by the thickness of the shell } \\
& \text { (which you can read off from the metric), and then integrate over the full range of } \\
& \psi \text {, from } 0 \text { to } \pi \text {. }
\end{aligned}
$$

Eq. (6.14) of Lecture Notes 6
Calculate the total volume of a closed universe, as described by the metric of
PROBLEM 5: VOLUME OF A CLOSED UNIVERSE (5 points)
8.286 PROBLEM SET 4, FALL 2009
$g \cdot d$

