

 credit problems challenging, interesting, and educational.

 grade, will be the ones most likely to be boosted.

 Кโчч:ธ!

 ${ }^{-600 z}$
UPCOMING QUIZZES: Thursday, November 5, and Thursday, December 3, material in these chapters.

 doing in lecture. For these chapters you should consider Ryden's book as an
 ter 5. Barbara Ryden, Introduction to Cosmology, Chapter 6. For Chapters 4,

apparent angular size $\Delta \theta$ (measured from one edge to the other) of the galaxy
as it would be observed from Earth today.
(b) Suppose that the physical diameter of the galaxy at time t_{G} was w. Find the radiating galaxy at the origin.]

 could be measured, for example, in watts, where 1 watt $=1$ joule $/ \mathrm{sec}$). The we call t_{0}. At the time of emission, the galaxy had a power output P (which
 rical galaxy that is locatec at $\psi=\psi_{G}$. The light that we see coordinates and that problem you should consider $a(t)$ to be an arbitrary function. You should simplify

Then
convenient to work with an alternative radial coordinate ψ, related to r by

The spacetime metric for a homogeneous, isotropic, closed universe is given by

$600 z$ TTVH 's LAS WGTGOYd 98\%'8

$t p=\frac{z^{d-}-\mathrm{I} \mu}{\Delta p}$

$\ell \mathrm{u}!\mathrm{S}=\ell$

$\left\{\left({ }_{z} \phi p \theta_{z^{\mathrm{UIS}}}+{ }_{{ }_{z}} \theta p\right)_{z^{\iota}}+\frac{z^{\iota}-\mathrm{I}}{{ }_{z} \iota p}\right\}$

 Physics DepartmentPROBLEM SET 5 X:OOTON

of səy!̣duụs э!̣ıұәu әчł os

иәчL related to r by

(squiod gI) 苗
PROBLEM 2: TRAJECTORIES AND DISTANCES IN AN OPEN

 әэиәәәјәх Кие ұпочұ!м ' z भ!!ч

$\frac{\theta \nabla}{m} \equiv{ }^{\text {sur }}$ д
 - θ

e) Another common definition of distance is angular size distance, determined
by measuring the apparent size of an object of known physical size. In a static,
Euclidean space, a small sphere of diameter w at a distance ℓ will subtend an
angle $\Delta \theta=w / \ell$:

 have different velocities, because each is at rest with respect to the matter in

 generally they are not equal to each other. One choice is called proper dis-
d) There are a number of different ways of defining distances in cosmology, and
 leave your answer in the form of a definite integral, which may be expressed in

 c) To estimate the number of galaxies that one expects to see in a given range on t_{G}, as well as ψ_{G} or any property of the function $a(t)$.)

 the simple form

 Cosmologists therefore define the luminosity distance by

$g \cdot d$

(c) The observer uses his own clocks to measure the proper time interval ΔT_{r}
 of each pulse. What is the coordinate time interval Δt_{r} between the reception
(b) The pulses are received by an observer at \vec{x}_{r}, who measures the time of arrival emission of the next pulse.) time coordinate t at the emission of one pulse and the time coordinate t at the
 by a clock at the same location. What is the coordinate time interval Δt_{e} pulses. The pulses are separated by a proper time interval ΔT_{e}, as measured

 which describes a static gravitational field. Here i runs from 1 to 3 , with the

In this problem we will consider the metric
 wavelength of light is redshifted.)
 as a quantum mechanical wave with wavelength $\lambda=h /|\vec{p}|$, then its wavelength

(c) The physical velocity of the particle relative to the galaxies that it is passing
(b) Use the expression for the spacetime metric to relate $d x / d t$ to $d x / d \tau$.
 is a two-dimensional space of constant negative curvature. In other words, this ${ }^{\prime} \mathrm{I}>{ }_{z}{ }^{h}+{ }_{z}{ }^{x}$

 I stated in Lecture Notes 6 that the space invented by Klein, described by the

 sufficient.)
 fact to estimate the gravitational redshift z of a photon that rises from the so $\phi(\vec{x})$ can be identified as the Newtonian gravitational potential. Use this ' $\phi^{\imath} \cdot Q-=\frac{{ }_{z} \not{ }{ } x_{z} p}{}$

 (d) A freely falling particle travels on a spacetime geodesic $x^{\mu}(\tau)$, where τ is the

Total points for Problem Set 5: 45, plus up to 5 points extra credit.

Insert these expressions into the distance function, expand everything to second
order in the infinitesimal quantities, and show that
(b) The next step is to derive the metric from the distance function above. Let
(a) As a first step, show that if x and y are replaced by the polar coordinates

8.286 PROBLEM SET 5, FALL 2009

