

body. Your result should show that time that would actually be measured by a clock moving with the orbiting

 angular velocity ω.
 behavior of circular orbits in this metric. We will assume a perfectly circular orbit

 Schwarzschild horizon $R_{S}=2 G M / c^{2}$, so we can take $r>R_{S}$. (This restriction
 where M is the total mass of the object, $0 \leq \theta \leq \pi, 0 \leq \phi<2 \pi$, and $\phi=$

 (squiod t?paıs pıұxa \& snld squiod 0I) OIU -LAN GTIHOSZYVMHOS V NI SLIGYO YVTNDYIO :I NGTGOYd 2009

UPCOMING QUIZZES: Thursday, November 5, and Thursday, December 3, lel reading to Weinberg's book, and really has no dependence on the chapters
that we are skipping.

 ter 7. Barbara Ryden, Introduction to Cosmology, Chapter 10. We have READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chap-

9 L'HS N'HTGOYd

Prof. Alan Guth Physics 8.286: The Early Universe October 29, 2009

ХŋOTONHDHL HO GLのLILSNI SLLASSOHOVSSVN

- d јо sumaz u! d rof uo!ssardxa ue puy

${ }^{\circ}{ }^{-}$.

течд мочs '(9) рие (q) suis \cap

$\overline{d t}\left(a^{3} \rho c^{2}\right)=-p \frac{}{d t}\left(a^{3}\right)$
(a) Using these relations, show that
$U=V_{\text {phys }} u$.
The energy of the gas in this region is then given by $V_{\text {phys }}(t)=a^{3}(t) V_{\text {coord }}$.
coordinate volume $V_{\text {coord }}$, so the physical volume will vary as

 әәшпјол әчд јо әдечя әчұ јо ssәррлеяәл
 (I$) \cdot \Lambda p d-=\Omega p$
os 'zunoure

 that the piston is moved a distance $d x$ to the right. (We suppose that the motion Let U denote the total energy of the gas, and let p denote the pressure. Suppose

