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PROBLEM SET 9

DUE DATE: Tuesday, December 1, 2009

READING ASSIGNMENT: “Inflation and the New Era of High-Precision Cos-
mology,” by Alan Guth, written for the MIT Physics Department annual
newsletter, 2002. It is available at

http://web.mit.edu/physics/alumniandfriends/physicsjournal_fall_02_cosmology.pdf.

The data quoted in the article about the nonuniformities of the cosmic mi-
crowave background radiation has since been superceded by much better data,
but the conclusions remain the same.

UPCOMING QUIZ: Thursday, December 3, 2009.

PROBLEM 1: MASS DENSITY OF VACUUM FLUCTUATIONS (10
points)

This problem was Problem 3 on Problem Set 8, but was held over.

The energy density of vacuum fluctuations will be discussed qualitatively in
lecture. In this problem we will calculate in detail the energy density associated with
quantum fluctuations of the electromagnetic field. To keep the problem finite, we
will not consider all of space at once, but instead we will consider the electromagnetic
field inside a cube of side L, defined by coordinates

0 ≤ x ≤ L ,

0 ≤ y ≤ L ,

0 ≤ z ≤ L .

Our goal, however, will be to compute the energy density in the limit as the size of
the box is taken to infinity.

(a) The electromagnetic waves inside the box can be decomposed into a Fourier
sum of sinusoidal normal modes. Suppose we consider only modes that extend
up to a maximum wave number kmax, or equivalently modes that extend down
to a minimum wavelength λmin, where

kmax =
2π
λmin

.

How many such modes are there? I do not expect an exact answer, but your
approximations should become arbitrarily accurate when λmin � L. (These
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mode counting techniques are probably familiar to many of you, but in case
they are not I have attached an extended hint after part (c).)

(b) When the electromagnetic field is described quantum mechanically, each normal
mode behaves exactly as a harmonic oscillator: if the angular frequency of the
mode is ω, then the quantized energy levels have energies given by

En =
(
n+ 1

2

)
h̄ω ,

where h̄ is Planck’s original constant divided by 2π, and n is an integer. The
integer n is called the “occupation number,” and is interpreted as the number
of photons in the specified mode. The minimum energy is not zero, but instead
is 1

2 h̄ω, which is the energy of the quantum fluctuations of the electromagnetic
field. Assuming that the mode sum is cut off at λmin equal to the Planck
length (as defined in the Lecture Notes), what is the total mass density of
these quantum fluctuations?

(c) How does the mass density of the quantum fluctuations of the electromagnetic
field compare with the critical density of our universe?

Extended Hint:

The electromagnetic fields inside a closed box can be expanded as the sum of
modes, each of which has a sinusoidally varying time dependence, but the precise
form of these modes depends on the nature of the boundary conditions on the walls
of the box. Physically reasonable boundary conditions, such as total reflection,
are in fact difficult to use in calculations. However, it is known that in the limit
of an infinite-sized box, the nature of the boundary conditions will not make any
difference. We are therefore free to choose the simplest boundary conditions that
we can imagine, and for this purpose we will choose periodic boundary conditions.
That is, we will assume that the fields and their normal derivatives on each wall
are fixed to precisely match the fields and their normal derivatives on the opposite
wall.

To begin, we consider a wave in one dimension, moving at the speed of light.
Such waves are most easily described in terms of complex exponentials. If A(x, t)
represents the amplitude of the wave, then a sinusoidal wave moving in the positive
x-direction can be written as

A(x, t) = Re
[
Beik(x−ct)

]
,

where B is a complex constant and k is a real constant. Defining ω = c|k|, waves
in either direction can be written as

A(x, t) = Re
[
Bei(kx−ωt)

]
,
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where the sign of k determines the direction. To be periodic with period L, the
parameter k must satisfy

kL = 2πn ,

where n is an integer. So the spacing between modes is ∆k = 2π/L. The density
of modes dN/dk (i.e., the number of modes per interval of k) is then one divided
by the spacing, or 1/∆k, so

dN

dk
=

L

2π
(one dimension) .

In three dimensions, a sinusoidal wave can be written as

A(�x, t) = Re
[
Bei(�k·�x−ωt)

]
,

where ω = c|�k|, and

kxL = 2πnx , kyL = 2πny , kzL = 2πnz ,

where nx, ny, and nz are integers. Thus, in three-dimensional �k-space the allowed
values of �k lie on a cubical lattice, with spacing 2π/L. In counting the modes, one
should also remember that for photons there is an extra factor of 2 associated with
the fact that electromagnetic waves have two possible polarizations for each allowed
value of �k.

PROBLEM 2: THE DEUTERIUM BOTTLENECK (10 points)

The “deuterium bottleneck” plays a major role in the description of big bang
nucleosynthesis: all of the nuclear reactions involved in nucleosynthesis depend
on deuterium forming at the start, but deuterium does not become stable until
the temperature reaches a rather low value. In this problem we will explore the
statistical mechanics of the deuterium bottleneck.

An ideal gas of classical nonrelativistic particles of type X , in thermal equilib-
rium, has a number density given by

nX = gX

(
mXkT

2πh̄2

)3/2

exp
(
−mXc2

kT

)
exp

(µX

kT

)
. (1)

Here gX is the number of spin degrees of freedom associated with the particle (like
the factor g = 2 that we encountered with photons), mX is the mass of the particle,
T is the temperature, and µX is the chemical potential of the particle. (h̄ = h/2π,
c, and k have their usual meanings: Planck’s constant, the speed of light, and the
Boltzmann constant.) You may or may not be familiar with chemical potential, but
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it will suffice for you to know that it is a concept introduced to treat quantities that
are conserved or at least effectively conserved over the time scales of interest. Such
quantities can have any value in thermal equilibrium, since the value is determined
by the initial conditions and cannot be changed. For each such conserved quantity
Qi one introduces a chemical potential µi. The chemical potential of particle X is
given by

µX =
∑

i

µiq
X
i , (2)

where qX
i is the amount of quantity Qi contained in one particle of type X . The

chemical potentials µi are then adjusted to produce the desired values for each of
the conserved quantities Qi. (In the grand canonical ensemble, which gives the
probability distribution that leads to Eq. (1), each possible state for the system as
a whole is assigned a probability proportional to exp(−E/kT ) exp(

∑
i µiQi), where

E is the energy of the state and Qi is the amount of quantity i in the state.) Note
that Eq. (2) implies that for any allowed reaction, such as

A+B ←→ C , (3)

we are guaranteed that
µA + µB = µC , (4)

since the conserved quantities must balance on the two sides of the equation.

(a) I mentioned in lecture that our textbook writes Eq. (1) incorrectly, omitting
the chemical potential factor. See for example Eqs. (10.11) and (10.12). The
author does, however, have a footnote about this (p. 156), which concludes
that “in most cosmological contexts, as it turns out, the chemical potential is
small enough to be safely neglected.” We can check this statement by using
the author’s formula to calculate the proton density at 3 minutes into the big
bang, at the time of Steven Weinberg’s Fifth Frame, from chapter 5 of The First
Three Minutes. At that time the temperature was T = 109 K. To compare with
the right answer, we make use of the fact that the ratio of the number density
nb of baryons to the number density nγ of photons is estimated from WMAP
data* as

η ≡ nb

nγ
= (6.1± 0.2)× 10−10 . (5)

According to Weinberg, at that time 14% of the baryons were neutrons, with
86% protons. At the risk of appearing impertinent toward the author (but

* D.N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three
year results: implications for cosmology,” Astrophys. J. Suppl. 170, 377 (2007),
also available at http://arxiv.org/abs/astro-ph/0603449. They actually write it as
6.116+0.197

−0.249 × 10−10, but I don’t think that we have any need for the extra digits.
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physicists are known for their impertinence), I will phrase the question this
way: By how many kilo-orders of magnitude is the author’s formula for np in
error?† (Be prepared to have your calculators overflow — if they do, calculate
the logarithm of the answer.)

(b) For deuterium production, the relevant reaction is

n+ p←→ D , (6)

so Eq. (4) tells us that µn + µp = µD. This equality implies that if we form
the ratio

nD

np nn
, (7)

expressing each number density as in Eq. (1), then the chemical potential fac-
tors will cancel out. (This is how the formula is normally used, and this is
how Ryden uses it on p. 180. From here on her treatment is correct, but we
will proceed with slightly more detail.) To describe the bookkeeping for the
reaction of Eq. (6), we need to define our variables. I am using nn, np, and
nD to mean the number densities of free neutrons, free protons, and deuterium
nuclei. nb denotes the total baryon number density, so

nb = nn + np + 2nD . (8)

Finally, I will use nTOT
n and nTOT

p to denote the total number densities of
neutrons and protons respectively, whether free or bound inside deuterium.
We assume that deuterium production happens fast enough so that there is no
further change in the neutron-proton balance while deuterium if forming, so
the ratio

f ≡ nTOT
n

nb
(9)

is fixed. We will describe the extent to which the reaction has proceeded by
specifying the fraction x of neutrons that remain free,

x ≡ nn

nTOT
n

. (10)

Using these definitions, write the equation that equates the ratio nD/(np nn)
to a function of temperature, using Eq. (1) for each of the number densities.

† I have exchanged email with Ryden about this, and she said she would fix it
in the next edition.
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The deuteron is spin-1, with g = 3, and the proton and neutron are each spin-
1
2 , with g = 2. You may approximate mn = mp = mD/2. Manipulate this
formula so that it has the form

F (η, f, x) = G(T ) ,

where F and G are functions that you must determine. You will need the
binding energy of deuterium,

B = (mp +mn −mD)c2 ≈ 2.22 MeV. (11)

This formula determines x as a function of T , or vice versa, but we will not try
to write the function explicitly in either case.

(c) Using your result in part (b), and taking f = 0.14 from Weinberg’s book, find
the value of x, the fraction of neutrons that have been bound in deuterium, at
the time of the Fifth Frame, when T = 109 K. You will probably want to solve
the equation numerically. Two significant figures will be sufficient.

(d) Again using your result from part (b), and assuming that f = 0.14 is still
accurate, find the temperature at which x = 1

2 , i.e., the temperature for which
half of the neutrons have become combined into deuterium. Again you will
presumably find the answer numerically, and 2 significant figures will be suffi-
cient. What is the value of kT at this temperature. Qualitatively, what feature
of the calculation causes this number to be small compared to B.

PROBLEM 3: THE HORIZON PROBLEM (8 points)

The success of the big bang predictions for the abundances of the light elements
suggests that the universe was already in thermal equilibrium at one second after
the big bang. At this time, the region which later evolves to become the observed
universe was many horizon distances across. Try to estimate how many. You may
assume that the universe is flat.

PROBLEM 4: THE FLATNESS PROBLEM (7 points)

Although we now know that Ω0 = 1 to an accuracy of a few percent, let us
pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second
after the big bang (about the time of the grand unified theory phase transition), Ω
must have been extraordinarily close to one. Writing Ω = 1− δ , estimate the value
of δ at t = 10−37 sec (using the standard cosmological model).

Total points for Problem Set 9: 35.


