How many such modes are there? I do not expect an exact answer, but your approximations should become arbitrarily accurate when $\lambda_{\min} \ll L$. (These		The electromagnetic waves inside the box can be decomposed into a Fourier represents the amplitude of ti sum of sinusoidal normal modes. Suppose we consider only modes that extend up to a maximum wave number k_{max} , or equivalently modes that extend down to a minimum wavelength λ_{\min} , where	Our goal, however, will be to compute the energy density in the limit as the size of To begin, the box is taken to infinity. Such waves ar	$0 \le x \le L$, difference. We an $0 \le y \le L$, we can imagine, $z = 1$. That is, we will $0 \le z \le L$. are fixed to preci- wall.	tions will be discussed qualitatively in letail the energy density associated with c field. To keep the problem finite, we ead we will consider the electromagnetic rdinates	This problem was Problem 3 on Problem Set 8, but was held over. Extended Hint:	PROBLEM 1: MASS DENSITY OF VACUUM FLUCTUATIONS (10 (c) How does points)	http://web.mit.edu/physics/alumniandfriends/physicsjournal_fall_02_cosmology.pdf.where \hbar isThe data quoted in the article about the nonuniformities of the cosmic mic crowave background radiation has since been superceded by much better data, but the conclusions remain the same.of photom of photom is $\frac{1}{2}\hbar\omega$, with the same.UPCOMING QUIZ: Thursday, December 3, 2009.length (as these quares)	READING ASSIGNMENT: "Inflation and the New Era of High-Precision Cos- mology," by Alan Guth, written for the MIT Physics Department annual newsletter, 2002. It is available at	(b)	November 25, 2009	MASSACHUSEI IS INSTITUTE OF TECHNOLOGY 8.286 PROBLEM SET 9, FALL 2009
$A(x,t) = \operatorname{Re}\left[Be^{i(kx-\omega t)} ight] \;,$	where B is a complex constant and k is a real constant. Defining $\omega = c k $, waves in either direction can be written as	represents the amplitude of the wave, then a sinusoidal wave moving in the positive x-direction can be written as $A(x,t) = \operatorname{Re}\left[Be^{ik(x-ct)}\right],$	To begin, we consider a wave in one dimension, moving at the speed of light. Such waves are most easily described in terms of complex exponentials. If $A(x, t)$	ulterence. We are therefore free to choose the simplest boundary conditions that we can imagine, and for this purpose we will choose periodic boundary conditions. That is, we will assume that the fields and their normal derivatives on each wall are fixed to precisely match the fields and their normal derivatives on the opposite wall.	The electromagnetic fields inside a closed box can be expanded as the sum of modes, each of which has a sinusoidally varying time dependence, but the precise form of these modes depends on the nature of the boundary conditions on the walls of the box. Physically reasonable boundary conditions, such as total reflection, are in fact difficult to use in calculations. However, it is known that in the limit of an infinite-sized box, the nature of the boundary conditions will not make any		How does the mass density of the quantum fluctuations of the electromagnetic field compare with the critical density of our universe?	where \hbar is Planck's original constant divided by 2π , and n is an integer. The integer n is called the "occupation number," and is interpreted as the number of photons in the specified mode. The minimum energy is not zero, but instead is $\frac{1}{2}\hbar\omega$, which is the energy of the quantum fluctuations of the electromagnetic field. Assuming that the mode sum is cut off at λ_{\min} equal to the Planck length (as defined in the Lecture Notes), what is the total mass density of these quantum fluctuations?	$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$,	When the electromagnetic field is described quantum mechanically, each normal mode behaves exactly as a harmonic oscillator: if the angular frequency of the mode is ω , then the quantized energy levels have energies given by	mode counting techniques are probably familiar to many of you, but in case they are not I have attached an extended hint after part (c).)	p. 2

	There a is the number of sain domand of fundion accorded with the next of (1) -	
According to Weinberg, ε 86% protons. At the ris	$n_X = g_X \left(\frac{m_X kT}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{m_X c^2}{kT}\right) \exp\left(\frac{\mu_X}{kT}\right) . \tag{1}$	
n_b of paryons to the num data* as η	An ideal gas of classical nonrelativistic particles of type X , in thermal equilibrium, has a number density given by	
the author's formula to c bang, at the time of Steve <i>Three Minutes.</i> At that ti the right answer, we mak	nucleosynthesis: all of the nuclear reactions involved in nucleosynthesis depend on deuterium forming at the start, but deuterium does not become stable until the temperature reaches a rather low value. In this problem we will explore the statistical mechanics of the deuterium bottleneck.	
author does, however, he that "in most cosmologic	The "deuterium bottleneck" plays a major role in the description of his hand	
since the conserved quantities (a) I mentioned in lecture th the chemical potential fa	values of k lie on a cubical lattice, with spacing $2\pi/L$. In counting the modes, one should also remember that for photons there is an extra factor of 2 associated with the fact that electromagnetic waves have two possible polarizations for each allowed value of \vec{k} .	
we are guaranteed that	where n_x, n_y , and n_z are integers. Thus, in three-dimensional \vec{k} -space the allowed	
	$k_x L = 2\pi n_x \; , k_y L = 2\pi n_y \; , k_z L = 2\pi n_z \; ,$	
that Eq. (2) implies that for a	where $\omega = c \vec{k} $, and	
probability distribution that 1 a whole is assigned a probabili E is the energy of the state a	$A(ec x,t) = { m Re} \left[B e^{i (ar k \cdot ec x - \omega t)} ight] \; ,$	
the conserved quantities Q_i .	In three dimensions, a sinusoidal wave can be written as	
where q_i^X is the amount of qu	$\frac{dN}{dk} = \frac{L}{2\pi} \text{(one dimension)} \; .$	
by the initial conditions and c Q_i one introduces a chemical given by	where n is an integer. So the spacing between modes is $\Delta k = 2\pi/L$. The density of modes dN/dk (i.e., the number of modes per interval of k) is then one divided by the spacing, or $1/\Delta k$, so	
it will suffice for you to know t are conserved or at least effect quantities can have any value	where the sign of k determines the direction. To be periodic with period $L,$ the parameter k must satisfy $kL=2\pi n \ ,$	
8.286 PROBLEM SET 9, FALL 200	8.286 PROBLEM SET 9, FALL 2009 p. 3	

c, and k have their usual meanings: Planck's constant, the speed of light, and the T is the temperature, and μ_X is the chemical potential of the particle. $(\hbar = h/2\pi,$ the factor g = 2 that we encountered with photons), m_X is the mass of the particle, Here g_X is the number of spin degrees of freedom associated with the particle (like Boltzmann constant.) You may or may not be familiar with chemical potential, but

l potential μ_i . The chemical potential of particle X is e in thermal equilibrium, since the value is determined cannot be changed. For each such conserved quantity ctively conserved over the time scales of interest. Such that it is a concept introduced to treat quantities that

$$\iota_X = \sum_i \mu_i q_i^X , \qquad (2)$$

and Q_i is the amount of quantity *i* in the state.) Note any allowed reaction, such as lity proportional to $\exp(-E/kT)\exp(\sum_i \mu_i Q_i)$, where ien adjusted to produce the desired values for each of quantity Q_i contained in one particle of type X. The leads to Eq. (1), each possible state for the system as (In the grand canonical ensemble, which gives the

$$A + B \longleftrightarrow C , \tag{3}$$

$$\mu_A + \mu_B = \mu_C , \qquad (4)$$

is must balance on the two sides of the equation.

mber density n_{γ} of photons is estimated from WMAP ke use of the fact that the ratio of the number density time the temperature was $T = 10^9$ K. To compare with en Weinberg's Fifth Frame, from chapter 5 of The First calculate the proton density at 3 minutes into the big ly neglected." We can check this statement by using ical contexts, as it turns out, the chemical potential is nave a footnote about this (p. 156), which concludes actor. See for example Eqs. (10.11) and (10.12). The hat our textbook writes Eq. (1) incorrectly, omitting

$$\eta \equiv \frac{n_b}{n_\gamma} = (6.1 \pm 0.2) \times 10^{-10} .$$
 (5)

isk of appearing impertinent toward the author (but at that time 14% of the baryons were neutrons, with

year results: implications for cosmology," Astrophys. J. Suppl. 170, 377 (2007), also available at http://arxiv.org/abs/astro-ph/0603449. They actually write it as $6.116_{-0.249}^{+0.197} \times 10^{-10}$, but I don't think that we have any need for the extra digits. * D.N. Spergel et al., "Wilkinson Microwave Anisotropy Probe (WMAP) three

Total points for Problem Set 9: 35.	\dagger I have exchanged email with Ryden about this, and she said she would fix it in the next edition.
Although we now know that $\Omega_0 = 1$ to an accuracy of a few percent, let us pretend that the value of Ω today is 0.1. It nonetheless follows that at 10^{-37} second after the big bang (about the time of the grand unified theory phase transition), Ω must have been extraordinarily close to one. Writing $\Omega = 1 - \delta$, estimate the value of δ at $t = 10^{-37}$ sec (using the standard cosmological model).	$x \equiv \frac{n_n}{n_n^{\text{TOT}}}$. (10) Using these definitions, write the equation that equates the ratio $n_D/(n_p n_n)$ to a function of temperature, using Eq. (1) for each of the number densities.
PROBLEM 4: THE FLATNESS PROBLEM (7 points)	specifying the fraction x of neutrons that remain free,
The success of the big bang predictions for the abundances of the light elements suggests that the universe was already in thermal equilibrium at one second after the big bang. At this time, the region which later evolves to become the observed universe was many horizon distances across. Try to estimate how many. You may assume that the universe is flat.	further change in the neutron-proton balance while deuterium if forming, so the ratio $f \equiv \frac{n_n^{\text{TOT}}}{n_b} $ (9) is fixed. We will describe the extent to which the reaction has proceeded by
PROBLEM 3: THE HORIZON PROBLEM (8 points)	Finally, I will use $n_n^{\perp \cup \perp}$ and $n_p^{\perp \cup \perp}$ to denote the total number densities of neutrons and protons respectively, whether free or bound inside deuterium. We assume that deuterium production happens fast enough so that there is no
presumably find the answer numerically, and 2 significant figures will be sufficient. What is the value of kT at this temperature. Qualitatively, what feature of the calculation causes this number to be small compared to B .	$n_b = n_n + n_p + 2n_D agenv{8}$
(d) Again using your result from part (b), and assuming that $f = 0.14$ is still accurate, find the temperature at which $x = \frac{1}{2}$, i.e., the temperature for which half of the neutrons have become combined into deuterium. Again you will	reaction of Eq. (6), we need to define our variables. I am using n_n , n_p , and n_D to mean the number densities of free neutrons, free protons, and deuterium nuclei. n_b denotes the total baryon number density, so
(c) Using your result in part (b), and taking $f = 0.14$ from Weinberg's book, find the value of x , the fraction of neutrons that have been bound in deuterium, at the time of the Fifth Frame, when $T = 10^9$ K. You will probably want to solve the equation numerically. Two significant figures will be sufficient.	expressing each number density as in Eq. (1), then the chemical potential fac- tors will cancel out. (This is how the formula is normally used, and this is how Ryden uses it on p. 180. From here on her treatment is correct, but we will proceed with slightly more detail.) To describe the bookkeeping for the
$B = (m_p + m_n - m_D)c^2 \approx 2.22 \text{ MeV}.$ (11) This formula determines x as a function of T, or vice versa, but we will not try to write the function explicitly in either case.	so Eq. (4) tells us that $\mu_n + \mu_p = \mu_D$. This equality implies that if we form the ratio $\frac{n_D}{n_p n_n}$, (7)
where F and G are functions that you must determine. You will need the binding energy of deuterium,	$n + p \longleftrightarrow D , \tag{6}$
$F(\eta,f,x)=G(T)\;,$	(b) For deuterium production, the relevant reaction is
The deuteron is spin-1, with $g = 3$, and the proton and neutron are each spin- $\frac{1}{2}$, with $g = 2$. You may approximate $m_n = m_p = m_D/2$. Manipulate this formula so that it has the form	physicists are known for their impertinence), I will phrase the question this way: By how many kilo-orders of magnitude is the author's formula for n_p in error? [†] (Be prepared to have your calculators overflow — if they do, calculate
8.286 PROBLEM SET 9, FALL 2009 p. 6	8.286 PROBLEM SET 9, FALL 2009 p. 5