

 $\frac{{ }^{\mathrm{u}{ }^{\mathrm{U}}} \mathrm{X}}{\nu Z}=$

 (e)

 $\cdot T>z>0$
$\cdot{ }^{\prime} T>\kappa>0$
${ }^{\prime} T>x>0$ field inside a cube of side L, defined by coordinates will not consider all of space at once, but instead we will consider the electromagnetic
 ЧҰ!м рәұе!̣ооsse Кұ!!

This problem was Problem 3 on Problem Set 8, but was held over. (squiod

UPCOMING QUIZ: Thursday, December 3, 2009. but the conclusions remain the same.

 newsletter, 2002. It is available at mology," by Alan Guth, written for the MIT Physics Department annual READING ASSIGNMENT: "Inflation and the New Era of High-Precision Cos-

6 LAS NATGOYd

Prof. Alan Guth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 c, and k have their usual meanings: Planck's constant, the speed of light, and the

$\int_{z / \varepsilon}\left(\frac{z^{y} \downarrow Z}{L^{y} X u}\right) x 6=x u$

$\left(\frac{L^{Y}}{X \eta}\right)$ dxә $\left(\frac{L^{Y}}{z^{\partial X u}}-\right)$ dхә
An ideal gas of classical nonrelativistic particles of type X, in thermal equilibstatistical mechanics of the deuterium bottleneck.

 value of \vec{k}.

where $\omega=c|\vec{k}|$, and

 Kysṭes ұsnu y ләұәшелед

8.286 PROBLEM SET 9, FALL 2009
'st! also available at http://arxiv.org/abs/astro-ph/0603449. They actually write it as

${ }_{0 \tau}-0 \tau \times\left(Z^{\circ} 0 \mp I^{\circ} 9\right)=\frac{u}{9 u} \equiv u$

$$
\text { data* }^{*} \text { as }
$$

 small enough to be safely neglected." We can check this statement by using that "in most cosmological contexts, as it turns out, the chemical potential is
 the chemical potential factor. See for example Eqs. (10.11) and (10.12). The
(a) I mentioned in lecture that our textbook writes Eq. (1) incorrectly, omitting
 $\cdot \partial n=a n+V n$

- $\lrcorner \longleftrightarrow G+V$

ұеч7 рәәұиетеп.я әле әм E is the energy of the state and Q_{i} is the amount of quantity i in the state.) Note a whole is assigned a probability proportional to $\exp (-E / k T) \exp \left(\sum_{i} \mu_{i} Q_{i}\right)$, where probability distribution that leads to Eq. (1), each possible state for the system as the conserved quantities Q_{i}. (In the grand canonical ensemble, which gives the chemical potentials μ_{i} are then adjusted to produce the desired values for each of
where q_{i}^{X} is the amount of quantity Q_{i} contained in one particle of type X. The
$x_{x}^{l} b ? d \square=x H$ given by Q_{i} one introduces a chemical potential μ_{i}. The chemical potential of particle X is рие suotұtриоо โетчи

cge : 6 łas uriqoid rof squ!̣od [ełol of δ at $t=10^{-37} \sec$ (using the standard cosmological model).

 of the calculation causes this number to be small compared to B. cient. What is the value of $k T$ at this temperature. Qualitatively, what feature

 accurate, find the temperature at which $x=\frac{1}{2}$, i.e., the temperature for which
(d) Again using your result from part (b), and assuming that $f=0.14$ is still

where F and G are functions that you must determine. You will need the
$(L) D=\left(x^{\prime} f^{\prime} U\right)_{H}$
formula so that it has the form

$g \cdot d$

(0T) $\quad \frac{{ }_{\text {LOL }}{ }_{L}^{u} u}{{ }_{u}{ }_{u}} \equiv x$
(6) $\frac{q^{u}}{\operatorname{LO}_{L}^{u} u} \equiv f$ о!̣е.. әчҰ
(8) $\cdot{ }^{\text {u }}$ Z $+{ }^{d} u+{ }^{u} u={ }^{q} u$

