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P
rof.

A
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E
M

S
E
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(T

h
e

L
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D
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E
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A
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E
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T
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D
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O
P

T
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N
A

L
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E
A

D
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G
A

S
S
IG

N
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E
N

T
:
B
arbara

R
yden,
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d
u
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n
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C
o
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o
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g
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(Inflation
and

the
V
ery

E
arly

U
niverse).

P
R

O
B

L
E
M

1:
E
X

P
O

N
E
N

T
IA

L
E
X

P
A

N
S
IO

N
O

F
T

H
E

IN
F
L
A

T
IO

N
-

A
R
Y

U
N

IV
E
R

S
E

(7
points)

R
ecall

that
the

evolution
of

a
R
obertson-W

alker
universe

is
described

by
the

equation
(
ȧa )

2

=
8
π3
G
ρ−

k
c
2

a
2
.

Suppose
that

the
m
ass

density
ρ
is

given
by

the
constant

m
ass

density
ρ

f
of

the
false

vacuum
.
For

the
case

k
=

0,the
grow

ing
solution

is
given

sim
ply

by

a(t)
=

const
e
χ

t,

w
here

χ
= √

8
π3
G
ρ

f

and
con
st

is
an

arbitrary
constant.

F
ind

the
grow

ing
solution

to
this

equation
for

an
arbitrary

value
of
k.

B
e
sure

to
consider

both
possibilities

for
the

sign
of
k.

Y
ou

m
ay

find
the

follow
ing

integrals
useful:

∫
d
x

√
1
+
x

2
=

sinh −
1
x

∫
d
x

√
1−

x
2
=

sin −
1
x
.

∫
d
x

√
x

2−
1
=

cosh −
1
x
.

Show
that

for
large

tim
es

one
has

a(t)∝
e
χ

t

for
all

choices
of
k.
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E
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O

R
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O
N

D
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E
F
O

R
T

H
E

P
R

E
S
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N
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E

(10
points)

W
e
have

not
discussed

horizon
distances

since
the

beginning
of

L
ecture

N
otes

5,
w
hen

w
e
found

that

�
p
,h

o
riz

o
n (t)

=
a(t) ∫

t

0

c

a(t ′)
d
t ′
.

(1)

T
his

form
ula

w
as

derived
before

w
e
discussed

curved
spacetim

es,
but

the
form

ula
is

valid
for

any
R
obertson-W

alker
universe,

w
hether

it
is

open,
closed,

or
flat.

(a)
Show

that
the

form
ula

above
is

valid
for

closed
universes.

H
int:

w
rite

the
closed

universe
m
etric

as
it

w
as

w
ritten

in
E
q.

(8.29):

d
s
2
=

−
c
2
d
t
2
+
ã
2(t) {

d
ψ

2
+
sin

2
ψ (d

θ
2
+

sin
2
θ
d
φ

2 )}
,

w
here

ã(t)≡
a(t)
√
k

and
ψ

is
related

to
the

usual
R
obertson-W

alker
coordinate

r
by

sin
ψ
≡

√
k
r
.

(b)
T
he

evaluation
of

the
form

ula
depends

of
course

on
the

form
of

the
function

a(t),
w
hich

is
governed

by
the

Friedm
ann

equations.
For

the
W

M
A
P

5-year
best

fit
to

the
param

eters,

H
0

=
72

km
·s −

1·M
pc −

1

Ω
m

=
0
.26

Ω
v
a
c
=

0
.74

Ω
r

=
8
.0×

10 −
5

(T
γ
,0
=

2
.725

K
)
,

find
the

current
horizon

distance,
expressed

both
in

light-years
and

in
M
pc.

H
int:

find
an

integralexpression
for

the
horizon

distance,sim
ilar

to
E
q.(8.23a)

for
the

age
of

the
universe.

T
hen

do
the

integralnum
erically.

N
ote

that
the

m
odel

for
w
hich

you
are

calculating
does

not
explicitly

include
inflation.

If
it
did,the

horizon
distance

w
ould

turn
out

to
be

vastly
larger.

B
y

ignoring
the

inflationary
era

in
calculating

the
integralofE

q.(1),w
e
are

finding
an

effective
horizon

distance,defined
as

the
present

distance
ofthe

m
ost

distant
ob

jects
that

w
e
can

in
principle

observe
by

using
only

photons
that

have
left

their
sources

after
the

end
of

inflation.
P
hotons

that
left

their
sources

earlier
than

the
end

of
inflation

have
undergone

incredibly
large

redshifts,
so

it
is

reasonable
to

consider
them

to
be

com
pletely

unobservable
in

practice.
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E
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O
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In
this

problem
w
e
w
ill

calculate
how

m
uch

inflation
is

needed
to

explain
the

observed
hom

ogeneity
ofthe

universe.
T
o
m
ake

the
calculation

w
ell-defined,w

e
w
ill

adopt
a
sim

ple
description

ofhow
inflation

w
orks.

A
lthough

w
e
are

trying
to

explain
the

hom
ogeneity

of
the

universe,
to

m
ake

the
problem

tractable
w
e
w
ill

need
to

assum
e
that

from
the

onset
ofinflation,at

a
tim

e
w
e
call

t
i ,the

universe
w
as

already
very

nearly
hom

ogeneous,
so

that
w
e
can

approxim
ate

its
evolution

using
sim

ple
equations.

W
e
w
illin

fact
assum

e
that

from
tim

e
t
i
onw

ard
the

evolution
equations

can
be

approxim
ated

by
those

of
a
hom

ogeneous,
isotropic,

and
flat

universe.
W
e

w
illassum

e
that

inflation
is
driven

by
a
false

vacuum
w
ith

a
fixed

m
ass

density
ρ
f ,

w
hich

w
e
w
illdescribe

by
relating

it
to

a
param

eter
E

f
by

ρ
f ≡

E
4f

h̄
3c

5
,

(1)

w
here

E
f
has

the
units

of
energy.

T
o
discuss

inflation
at

the
energy

scale
of

grand
unified

theories,
w
e
w
illw

rite
E

f
as

E
f ≡

E
1
6 ×

10
1
6
G
eV
,

(2)

w
here

E
1
6
is

a
dim

ensionless
num

ber
that

w
ill

w
e
w
ill

assum
e
is

of
order

1.
T
he

H
ubble

param
eter

during
inflation

is
then

dictated
by

the
Friedm

ann
equation,

H
2i
=

8
π3
G
ρ
f
.

(3)

W
hile

w
e
are

assum
ing

enough
hom

ogenity
to

proceed
w
ith

the
calculation,w

e
still

w
ant

to
assum

e
that

the
high

precision
hom

ogeneity
of

the
observed

universe
(like

the
1
part

in
10

5
uniform

ity
ofthe

C
M
B
)
w
as

not
part

ofthe
initialconditions,

but
m
ust

be
explained

in
term

s
ofthe

evolution
ofthe

universe.
T
he

hom
ogeneity

is
created

first
on

short
distance

scales,
and

the
length

scale
of

hom
ogeneity,denoted

by
r
h (t),

increases
w
ith

tim
e.

A
t
the

onset
of

inflation
w
e
assum

e
that

norm
al

therm
alequilibrium

processes
have

already
sm

oothed
the

universe
on

scales
sm

aller
than

the
H
ubble

length,
so

w
e
w
rite

r
h (t

i )≈
β
cH

−
1

i
,

(4)

w
here

β
is

a
dim

ensionless
constant

w
ith
β
<∼

1.

W
e
assum

e
that

inflation
continues

long
enough

so
that

the
universe

expands
by

a
factor

Z
,
w
here

w
e
w
ill

be
trying

to
calculate

the
m
inim

um
value

of
Z
.
W
e

w
ill

assum
e
for

sim
plicity

that
inflation

ends
suddenly,

at
tim

e
t
e .

R
eheating

is
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then
assum

ed
to

occur
instantly,w

ith
the

m
ass

density
ρ
f
ofthe

false
vacuum

being
converted

to
therm

al
equilibrium

radiation,described
as

in
L
ecture

N
otes

7
by

ρ
R

H
=
g
R

H
π

2

30
(k
T

R
H
)
4

h̄
3c

5
,

(5)

w
here

g
R

H
reflects

the
totalnum

ber
of

particles
that

are
effectively

m
assless

at
the

energy
scale

of
reheating.

For
a
grand

unified
theory

one
m
ight

take
g
R

H
≈

300,
but

fortunately
the

value
of

this
highly

uncertain
num

ber
w
illnot

have
m
uch

effect
on

the
answ

er.
T
he

length
scale

of
hom

ogeneity
is

stretched
by

inflation
to

r
h (t

e )
=
Z
r
h (t

i )
,

(6)

and
w
e
w
illassum

e
that

r
h (t)

continues
to

evolve
only

by
being

stretched
w
ith

the
scale

factor.
T
he

length
scale

today
is

then
given

by

r
h (t

0 )
=
a(t

0 )
a(t

e )
Z
r
h (t

i )
.

(7)

T
o
evaluate

a(t
0 )/
a(t

e ),
you

can
use

the
conservation

of
entropy,

a
3s

=
con
sta
n
t,

w
here

s
is

the
entropy

density,
w
hich

is
very

accurate
from

the
end

of
inflation

to
the

present.
For

the
current

entropy
density,include

photons
and

neutrinos,taking
into

account
the

tem
perature

difference
T

ν
/
T

γ
=

(4
/11)

1
/
3.

P
rob

lem
:
F
ind

the
m
inim

um
value

of
Z

such
that

r
h (t

0 )
>
�
p
,h

o
riz

o
n (t

0 )
,

(8)

using
the

value
of
�
p
,h

o
riz

o
n (t

0 )
calculated

in
P
roblem

2.
(If

you
did

not
do

P
roblem

2,you
could

use
instead

3ct
0 ,the

answ
er

for
a
flat

m
atter-dom

inated
universe,

w
ith
t
0 ≈

13
.7

billion
years.)

A
ssum

e
the

param
eters

of
the

W
M
A
P

3-year
best

fit
described

in
P
roblem

2,
and

w
rite

your
answ

er
for

Z
m

in
as

a
function

of
E

1
6 ,
g
R

H
,
and

β
.

Since
inflation

is
an

exponential
process,

it
is

useful
to

also
express

the
num

erical
answ

er
in

term
s
of
N

m
in

≡
ln
Z

m
in ,

w
hich

is
the

m
inim

um
num

ber
of

e-foldings
of

inflation.
(A

n
“e-folding”

refers
to

a
period

of
one

H
ubble

tim
e,

∆
t
=
H

−
1,

so
the

scale
factor

expands
by

e
H

∆
t
=
e
1
=
e.)
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In
the

description
of

density
fluctuations

in
inflationary

m
odels,the

sm
allam

-
plitude

of
the

fluctuations
im

plies
that

they
can

be
accurately

described
by

linear
perturbation

theory.
In

this
treatm

ent
the

fluctuations
can

be
expanded

in
m
odes

of
definite

w
avelength,

and
the

interactions
of

one
w
avelength

w
ith

another
are

ignored.
T
hus,

w
e
describe

the
perturbations

one
m
ode

at
a
tim

e.
A
s
the

m
ode

evolves
the

w
avelength

in
com

oving
coordinates

is
fixed,so

the
physicalw

avelength
of

a
m
ode

grow
s
as

the
universe

expands.

T
he

behavior
ofa

m
ode

changes
qualitatively,depending

on
w
hether

the
phys-

ical
w
avelength

is
sm

aller
or

larger
than

the
H
ubble

length,
cH

−
1.

It
is

therefore
im

portant
to

keep
track

ofw
hen

a
given

m
ode

crosses
the

H
ubble

length,and
there-

fore
changes

its
behavior.

A
typicalm

ode
ofobservationalinterest

has
a
w
avelength

today
that

is
sm

allcom
pared

to
the

H
ubble

length,but
nonetheless

such
m
odes

have
spent

a
significant

part
oftheir

life
w
ith

a
w
avelength

larger
than

the
H
ubble

length.

D
uring

inflation
the

H
ubble

expansion
rate

is
either

constant
or

very
slow

ly
varying,

so
the

H
ubble

length
can

be
considered

fixed.
T
he

physical
w
avelength

of
a
given

m
ode,how

ever,grow
s
w
ith

the
scale

factor,and
hence

grow
s
exponentially.

W
ith

this
rapid

grow
th,a

typicalm
ode

w
ith

a
w
avelength

shorter
than

the
H
ubble

length
w
ill

soon
cross

the
H
ubble

length.
T
his

event
is

called
the

first
H

ubble
crossing.

Since
the

physicalw
avelength

is
grow

ing
exponentially,it

rapidly
becom

es
m
uch

larger
than

the
H
ubble

length.

Since
the

physical
w
avelength

of
a
m
ode

grow
s
m
onotonically

as
the

universe
expands,

a
little

thought
is

required
to

understand
how

a
m
ode

w
ith

a
w
avelength

larger
than

the
H
ubble

length
can

at
a
later

tim
e
have

a
w
avelength

w
hich

is
sm

aller
than

the
H
ubble

length.
T
he

key,of
course,

is
that

the
H
ubble

length
also

changes
w
ith

tim
e.

In
a
m
atter-dom

inated
flat

universe,
for

exam
ple,

the
physical

w
ave-

length
of

a
specific

m
ode

grow
s
w
ith

the
scale

factor,
a(t)∝

t
2
/
3.

T
he

H
ubble

expansion
rate

H
=
ȧ
/
a
=

2
/(3
t),

so
the

H
ubble

length
is

given
by

32
ct

,
w
hich

grow
s
faster

than
a(t).

T
hus

the
H
ubble

length
catches

up
w
ith

the
w
avelengths

of
m
odes

that
are

outside
the

H
ubble

length,
so

each
m
ode

goes
through

a
second

H
ubble

crossing,at
w
hich

the
w
avelength

changes
from

outside
to

inside
the

H
ubble

length.

A
s
w
illbe

discussed
in

lecture,the
properties

ofthe
fluctuation

m
ode

are
largely

determ
ined

at
first

H
ubble

crossing,
so

it
is

im
portant

to
know

how
to

find
w
hen

this
occurs.

In
this

problem
w
e
w
ill

calculate
w
hen

w
avelengths

that
are

in
the

vicinity
of1

M
pc

today
underw

ent
their

first
H
ubble

crossing.
W
e
w
illuse

the
sam

e
m
odel

of
instantaneous

reheating
that

w
as

used
in

the
previous

problem
.
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L
et
t
H

1 (λ)
denote

the
tim

e
of

first
H
ubble

crossing
for

a
m
ode

w
ith

physical
w
avelength

today
equal

to
λ.

T
he

quantity
that

w
e
w
illactually

calculate
is

Z
H

1 (λ)≡
a(t

e )
a (t

H
1 (λ) )

,
(9)

w
here

Z
H

1 (λ)
can

be
described

as
the

inflationary
factor

that
occurs

after
the

m
ode

undergoes
first

H
ubble

crossing.
T
hen

N
H

1 (λ)≡
ln
Z

H
1 (λ)

(10)

is
the

num
ber

of
e-foldings

of
inflation

that
occur

after
first

H
ubble

crossing.

Since
w
e
w
ish

to
express

Z
H

1
in

term
s
ofthe

physicalw
avelength

at
the

present
tim

e
t
0 ,it

is
useful

to
rew

rite
E
q.(10)

as
the

product
of

tw
o
factors:

Z
H

1 (λ)
=
a(t

e )
a(t

0 )
a(t

0 )
a (t

H
1 (λ) )

.
(11)

N
ote

that
the

first
factor

appeared
in

E
q.(7)

of
the

previous
problem

,so
you

have
already

thought
about

it.
Y
ou

need
to

figure
out

how
to

evaluate
the

second
factor.

P
rob

lem
:
F
ind

Z
H

1 (λ),
using

the
sam

e
description

of
the

inflationary
m
odel

as
in

the
previous

problem
.
D
efine

the
dim

ensionless
param

eter

λ̃≡
λ

1
M
pc
,

(12)

and
express

your
answ

er
in

term
s
of
λ̃,
E

1
6 ,

and
g
R

H
.
A
gain

it
is

useful
to

explicitly
w
rite

the
answ

er
in

term
s
of
N

H
1 ≡

ln
Z

H
1 (λ̃),w

hich
can

be
described

as
the

num
ber

of
e-foldings

of
inflation

that
happen

after
the

m
ode

described
by
λ̃
has

undergone
first

H
ubble

crossing.

T
otal

p
oin

ts
for

P
rob

lem
S
et

10:
37


