 and const is an arbitrary constant. Find the growing solution to this equation for $\operatorname{fd} D \frac{\varepsilon}{\psi 8} \Lambda=\chi$

false vacuum. For the case $k=0$, the growing solution is given simply by
 equation

(iҰSET әчL) 0I L'GS N'GTAOYd
Prof. Alan Guth

ХЮОTONHOGL HO GLのLILSNI SLLASOHOVSSVN

${ }_{\mathrm{L}-}{ }^{?} H^{\partial} \partial \approx\left({ }^{?} \cdot\right)^{y_{\ell}}$

($)$

 (like the 1 part in 10^{5} uniformity of the CMB) was not part of the initial conditions,

$\operatorname{Id} \cap \frac{\varepsilon}{\Perp 8}={ }_{z}^{\imath} H$
 where E_{16} is a dimensionless number that will we will assume is of order 1 . The

 where E_{f} has the units of energy. To discuss inflation at the energy scale of grand will assume that inflation is driven by a false vacuum with a fixed mass density ρ_{f},

8.286 PROBLEM SET 10, FALL 2009

, is useful to also express the numerical answer in terms of $N_{\min } \equiv \ln Z_{\min }$,
which is the minimum number of e-foldings of inflation. (An "e-folding" refers a function of E_{16}, g_{RH}, and β. Since inflation is an exponential process, it 3 -year best fit described in Problem 2, and write your answer for $Z_{\min }$ as
 Problem 2, you could use instead $3 c t_{0}$, the answer for a flat matter-dominated using the value of $\ell_{p, \text { horizon }}\left(t_{0}\right)$ calculated in Problem 2. (If you did not do

$$
4-2
$$

Problem: Find the minimum value of Z such that

$\left({ }^{2} 7\right)^{4} \ell Z \frac{\left({ }^{2} 7\right) p}{\left({ }^{0} 7\right)^{p}}=\left({ }^{0} 7\right)^{y_{\iota}}$

scale factor. The length scale today is then given by

$\left({ }^{?} Z\right)^{4} \iota Z=\left({ }^{a} Z\right)^{4} \iota$
on the answer. The length scale of homogeneity is stretched by inflation to
 energy scale of reheating. For a grand unified theory one might take $g_{\mathrm{RH}} \approx 300$,
where g_{RH} reflects the total number of particles that are effectively massless at the

$\rho_{\mathrm{RH}}=g_{\mathrm{RH}} \frac{\pi^{2}}{30} \frac{\left(k 1_{\mathrm{RH}}\right)^{4}}{\hbar^{3} c^{5}}$

 converted to thermal equilibrium radiation, described as in Lecture Notes 7 by

6007 TTVA ‘0I L'ヨS NATGOYd 987.8
 vicinity of 1 Mpc today underwent their first Hubble crossing. We will use the same

 чұจ๐иә

 expansion rate $H=\dot{a} / a=2 /(3 t)$, so the Hubble length is given by $\frac{3}{2} c t$, which
 with time. In a matter-dominated flat universe, for example, the physical wave-

 much larger than the Hubble length.

 a given mode, however, grows with the scale factor, and hence grows exponentially.

 of a mode grows as the universe expands.

 -uе пाе \qquad : t NGTGOYd

time t_{0}, it is useful to rewrite Eq. (10) as the product of two factors:
is the number of e-foldings of inflation that occur after first Hubble crossing.
Since we wish to express $Z_{H 1}$ in terms of the physical wavelength at the p
$(Y)^{\mathrm{L}}{ }^{H} Z \mathrm{UI} \equiv(Y)^{\mathrm{L}}{ }^{H} N$
undergoes first Hubble crossing. Then where $Z_{H 1}(\lambda)$ can be described as the inflationary factor that occurs after the mode

wavelength today equal to λ. The quantity that we will actually calculate is

8.286 PROBLEM SET 10, FALL 2009

