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8.286:
T
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E
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U
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23,
2011

P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

3

D
U

E
D

A
T

E
:
Friday,Septem

ber
30,

2011

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:Steven

W
einberg,

T
h
e

F
irst

T
h
ree

M
in

u
tes,C

hap-
ter

3.

F
IR

S
T

Q
U

IZ
:
T
he

first
of

three
quizzes

for
the

term
w
ill

be
given

on
T
hursday,

O
ctober

6,
2011.

P
R

O
B

L
E
M

1:
A

C
Y

L
IN

D
R

IC
A

L
U

N
IV

E
R

S
E

(10
points)

T
he

follow
ing

problem
originated

on
Q

uiz
2

of
1994,

w
here

it
counted

30
points.

T
he

lecture
notes

show
ed

a
construction

of
a
N
ew

tonian
m
odelof

the
universe

that
w
as

based
on

a
uniform

,
expanding,

sphere
of

m
atter.

In
this

problem
w
e
w
ill

construct
a
m
odel

of
a
cylindrical

universe,
one

w
hich

is
expanding

in
the

x
and

y
directions

but
w
hich

has
no

m
otion

in
the

z
direction.

Instead
of

a
sphere,

w
e
w
ill

describe
an

infinitely
long

cylinder
of

radius
R

m
a
x
,i ,

w
ith

an
axis

coinciding
w
ith

the
z-axis

of
the

coordinate
system

:

W
e
w
illuse

cylindrical
coordinates,

so

r
= √

x
2
+
y
2

and

�r
=
x
ı̂+
y
̂
;

r̂
=
�rr
,

8.286
P

R
O

B
L
E

M
S
E

T
3,

F
A

L
L

2011
p
.
2

w
here

ı̂,
̂,

and
k̂
are

the
usual

unit
vectors

along
the

x,
y,

and
z
axes.

W
e
w
ill

assum
e
that

at
the

initial
tim

e
t
i ,
the

initial
density

of
the

cylinder
is
ρ

i ,
and

the
initialvelocity

of
a
particle

at
position

�r
is

given
by

the
H
ubble

relation
�v

i
=
H

i �r
.

a)
B
y
using

G
auss’

law
of

gravity,
it

is
possible

to
show

that
the

gravitational
acceleration

at
any

point
is

given
by

�g
=

−
A
µr
r̂
,

w
here

A
is

a
constant

and
µ
is

the
totalm

ass
per

length
contained

w
ithin

the
radius

r.
E
valuate

the
constant

A
.

b)
A
s
in

the
lecture

notes,
w
e
let
r(r

i ,t)
denote

the
trajectory

of
a
particle

that
starts

at
radius

r
i
at

the
initial

tim
e
t
i .

F
ind

an
expression

for
r̈(r

i ,t),
ex-

pressing
the

result
in

term
s
of
r,
r
i ,
ρ

i ,
and

any
relevant

constants.
(H

ere
an

overdot
denotes

a
tim

e
derivative.)

c)
D
efining

u(r
i ,t)≡

r(r
i ,t)
r
i

,

show
that

u(r
i ,t)

is
in

fact
independent

of
r
i .

T
his

im
plies

that
the

cylinder
w
illundergo

uniform
expansion,just

as
the

sphere
did

in
the

case
discussed

in
the

lecture
notes.

A
s
before,

w
e
define

the
scale

factor
a(t)≡

u(r
i ,t).

d)
E
xpress

the
m
ass

density
ρ(t)

in
term

s
of

the
initial

m
ass

density
ρ

i
and

the
scale

factor
a(t).

U
se

this
expression

to
obtain

an
expression

for
ä
in

term
s
of

a,
ρ,and

any
relevant

constants.
e)

F
ind

an
expression

for
a
conserved

quantity
of

the
form

E
=

12
ȧ
2
+
V
(a)
.

W
hat

is
V
(a)?

W
illthis

universe
expand

forever,
or

w
ill

it
collapse?

P
R

O
B

L
E
M

2:
A

F
L
A

T
U

N
IV

E
R

S
E

W
IT

H
U

N
U

S
U

A
L

T
IM

E
E
V

O
L
U

-
T

IO
N

(5
points)

C
onsider

a
fl
a
t
universe

w
hich

is
filled

w
ith

som
e
peculiar

form
of

m
atter,

so
that

the
R
obertson–W

alker
scale

factor
behaves

as
a(t)

=
bt

3
/
4
,

w
here

b
is

a
constant.

(a)
For

this
universe,

find
the

value
of

the
H
ubble

expansion
rate

H
(t).

(b)
W

hat
is

the
m
ass

density
of

the
universe,

ρ(t)?
(In

answ
ering

this
question,

you
w
ill

need
to

know
that

the
equation

for
ȧ
/
a,

E
q.

(3.30)
in

L
ecture

N
otes

3,
holds

for
all

form
s
of

m
atter,

w
hile

the
equation

for
ä,

E
q.

(3.23),
requires

m
odification

ifthe
m
atter

has
a
significant

pressure.
E
q.(3.23)

is
therefore

not
applicable

to
this

problem
.)
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P
R

O
B

L
E
M

3:
E
N

E
R

G
Y

A
N

D
T

H
E

F
R

IE
D

M
A

N
N

E
Q

U
A

T
IO

N
(10

points)

T
he

Friedm
ann

equation,
ȧa 

2

=
8
π3
G
ρ−

k
c
2

a
2
,

(1)

w
as

derived
in

L
ecture

N
otes

3
as

a
first

integral
of

the
equations

of
m
otion.

T
he

equation
w
as

first
derived

in
a
different

form
,

E
=

12
ȧ
2−

4
π3
G
ρ

i

a
=

constant,
(2)

w
here

k
=

−
2
E
/
c
2.

In
this

form
the

equation
looks

m
ore

like
a
conservation

of
energy

relation,
although

the
constant

E
does

not
have

the
dim

ensions
of

energy.
T
here

are
tw

o
w
ays,

how
ever,

in
w
hich

the
quantity

E
can

be
connected

to
the

conservation
ofenergy.

It
is
related

the
energy

ofa
test

particle
that

m
oves

w
ith

the
H
ubble

expansion,and
it
is
also

related
to

the
totalenergy

of
the

entire
expanding

sphere
of

radius
R

m
a
x ,

w
hich

w
as

discussed
in

L
ecture

N
otes

3
as

a
m
ethod

of
deriving

the
Friedm

ann
equations.

In
this

problem
you

w
illderive

these
relations.

F
irst,

to
see

the
relation

w
ith

the
energy

of
a
test

particle
m
oving

w
ith

the
H
ubble

expansion,
define

a
physical

energy
E

p
h
y
s
by

E
p
h
y
s ≡
m
r
2i E
,

(3)

w
here

m
is

the
m
ass

of
the

test
particle

and
r
i
is

its
initial

radius.
N
ote

that
the

gravitationalforce
on

this
particle

is
given

by

�F
=

−
G
m
M

(r
i )

r
2

r̂
=

−
�∇
V

e
ff (r)

,
(4)

w
here

M
(r

i )
is

the
total

m
ass

initially
contained

w
ithin

a
radius

r
i
of

the
origin,

r
is

the
present

distance
of

the
test

particle
from

the
origin,

and
the

“effective”
potential

energy
V

e
ff (r)

is
given

by

V
e
ff (r)

=
−
G
m
M

(r
i )

r
.

(5)

T
he

m
otivation

for
calling

this
quantity

the
“effective”

potential
energy

w
ill

be
explained

below
.

(a)
Show

that
E

p
h
y
s
is

equal
to

the
“effective”

energy
of

the
test

particle,
defined

by

E
e
ff
=

12
m
v
2
+
V

e
ff (r)

.
(6)
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W
e
understand

that
E

e
ff
is
conserved

because
it
is
the

energy
in

an
analogue

problem
in

w
hich

the
test

particle
m
oves

in
the

gravitationalfield
ofa

point
particle

ofm
ass

M
(r

i ),located
at

the
origin,w

ith
potentialenergy

function
V

e
ff (r).

In
this

analogue
problem

the
force

on
the

test
particle

is
exactly

the
sam

e
as

in
the

real
problem

,
but

in
the

analogue
problem

the
energy

of
the

test
particle

is
conserved.

W
e
call(6)

the
“effective”

energy
because

it
is
really

the
energy

ofthe
analogue

problem
,
and

not
the

real
problem

.
T
he

true
potential

energy
V
(r,t)

of
the

test
particle

is
defined

to
be

the
am

ount
of

w
ork

w
e
m
ust

supply
to

m
ove

the
particle

to
its

present
location

from
som

e
fixed

reference
point,

w
hich

w
e
m
ight

take
to

be
r
=

∞
.
W
e
w
illnot

bother
to

w
rite

V
(r,t)

explicitly,since
w
e
w
illnot

need
it,but

w
e

point
out

that
it
depends

on
the

tim
e
t
and

on
R

m
a
x ,and

w
hen

differentiated
gives

the
correct

gravitationalforce
at

any
radius.

B
y
contrast,

V
e
ff (r)

gives
the

correct
force

only
at

the
radius

of
the

test
particle,

r
=
a(t)r

i .
T
he

true
potential

energy
function

V
(r,t)

gives
no

conservation
law

,
since

it
is

explicitly
tim

e-dependent,
w
hich

is
w
hy

the
quantity

V
e
ff (r)

is
useful.

T
o
relate

E
to

the
totalenergy

of
the

expanding
sphere,

w
e
need

to
integrate

over
the

sphere
to

determ
ine

its
totalenergy.

T
hese

integrals
are

m
ost

easily
carried

out
by

dividing
the

sphere
into

shells
of

radius
r,

and
thickness

d
r,

so
that

each
shell

has
a
volum

e
d
V

=
4
π
r
2
d
r
.

(7)

(b)
Show

that
the

totalkinetic
energy

K
of

the
sphere

is
given

by

K
=
c
K
M
R

2m
a
x
,i {

12
ȧ
2(t) }

,
(8)

w
here

c
K

is
a
num

ericalconstant,
M

is
the

totalm
ass

ofthe
sphere,and

R
m

a
x
,i

is
the

initialradius
of

the
sphere.

E
valuate

the
num

erical
constant

c
K
.

(c)
Show

that
the

totalpotentialenergy
of

the
sphere

can
sim

ilarly
be

w
ritten

as

U
=
c
U
M
R

2m
a
x
,i {−

4
π3
G
ρ

i

a }
.

(9)

(Suggestion:
calculate

the
totalenergy

needed
to

assem
ble

the
sphere

by
bring-

ing
in

one
shell

of
m
ass

at
a
tim

e
from

infinity.)
Show

that
c
U

=
c
K
,
so

that
the

totalenergy
of

the
sphere

is
given

by

E
to

ta
l =
c
K
M
R

2m
a
x
,i E

.
(10)

T
otal

p
oin

ts
for

P
rob

lem
S
et

3:
25.


