our assumption about the initial condition can be expressed as temperature had some value T_{1} ．We will let $\tilde{\rho}(\nu, t)$ denote the spectral distribution
for photons in the universe，which is a function of frequency ν and time t ．Thus，
 unit interval of wavelength．Here，for simplicity，we drop the subscript ν ．）In this
 volume carried by photons whose frequency is in the interval $[\nu, \nu+d \nu]$ ．（In Lecture where $h=2 \pi \hbar$ is the original Planck＇s constant．$\rho(\nu, T) d \nu$ is the energy per unit

$\frac{\varepsilon^{\partial}}{n y_{Z} \ngtr 9 I}=\left(L^{‘} \wedge\right) d$ －$\frac{I-L^{2} / n y^{\partial}}{I}$

 can rewrite as photons at temperature T was stated in Lecture Notes 6 as Eq．（6．69），which we

 （squiod 0I）UNกO甘ゆYOVG

PROBLEM 3：THE REDSHIFT OF THE COSMIC MICROWAVE when the muons disappear？ Robertson－Walker scale factor，by what factor does the quantity $a T$ increase off from the muons is shared among all the other particles．Letting a denote the

 （c）As $k T$ falls below 106 MeV ，the muons disappear from the thermal equilibrium

（b）When $k T$ is just above 106 MeV as the universe cools，what particles besides

（squiod 0I）SNO suozoчd јо punosજяэeq
 pens that significantly effects this ratio right up to the present day．So we expect the electron－positron pairs，$T_{\nu} / T_{\gamma}=(4 / 11)^{1 / 3}$ ．As far as we know，nothing hap－

 off as $1 / a^{3}(t)$ ．

PROBLEM 1：ENTROPY AND THE BACKGROUND NEUTRINO
UPCOMING QUIZ：Thursday，December 8， 2011. （Dark Matter）．
 DUE DATE：Thursday，November 17， 2011

L 山互S N＇THOOY』

How does the mass density of the quantum fluctuations of the electromagnetic

 where \hbar is Planck's original constant divided by 2π, and n is an integer. The

$$
\text { ‘my }\left(\frac{z}{I}+u\right)={ }^{u} \sharp
$$

mode is ω, then the quantized energy levels have energies given by

(a) The electromagnetic waves inside the box can be decomposed into a Fourier the box is taken to infinity.
 $0 \leq z \leq L$.
$-x=0$ field inside a cube of side L, defined by coordinates

 The energy density of vacuum fluctuations will be discussed qualitatively in (squiod

LLOZ TTVA ‘ L LAS WGTGOצd 98z'8
$\cdot(\mp \cdot \varepsilon d) \cdot b$ g

(c) Since $\tilde{\rho}\left(\nu, t_{2}\right)$ denotes the spectral energy density at time t_{2}, we can write

each such photon is $h \nu$, the number $d N_{1}$ of tagged photons is then

in a radiation-dominated universe:

be a thermal distribution, but in fact we will be able to show that

$$
18
$$

[^0]

 $k_{x} L=2 \pi n_{x}, \quad k_{y} L=2 \pi n_{y}, \quad k_{z} L=2 \pi n_{z}$,
where $\omega=c|\vec{k}|$ ，and $\left[(7\right.$ m－x．$\left.\cdot \underline{y}) ?^{\partial} \partial\right] \partial \mathrm{Z}=\left(7^{6} x\right) V$

In three dimensions，a sinusoidal wave can be written as

$\frac{y p}{N p}$

by the spacing，or $1 / \Delta k$ ，so
 $u \Perp Z=T Y$
 where the sign of k determines the direction．To be periodic with period L ，the

$\left[\left(\neq\right.\right.$ m－xy）$\left.{ }^{2} \mathcal{Z}\right] \partial \mathrm{U}=\left(7^{`} x\right) \mathrm{V}$

where B is a complex constant and k is a real constant．Defining $\omega=c|k|$ ，waves $\left[(\not \supset-x) y l^{2} \partial G\right] \partial \mathrm{Z}=\left(7^{6} x\right) \mathrm{V}$
x－direction can be written as represents the amplitude of the wave，then a sinusoidal wave moving in the positive

wall． are fixed to precisely match the fields and their normal derivatives on the opposite
 we can imagine，and for this purpose we will choose periodic boundary conditions． difference．We are therefore free to choose the simplest boundary conditions that of an infinite－sized box，the nature of the boundary conditions will not make any
 of the box．Physically reasonable boundary conditions，such as total reflection， form of these modes depends on the nature of the boundary conditions on the walls

－s／u 8G才＇ $76 L^{\prime} 667$

 flat universe case，you can for equal credit do this problem for an open universe，

 which the critical density is comprised of nonrelativistic matter and vacuum energy

（s7d 8 ＇LIG田みつ VYLX甘）NOIL

 COSMOLOGICAL CONSTANTPROBLEM 6：BRIGHTNESS VS．REDSHIFT WITH A POSSIBLE and denominator of the equation for J vanish as $\Omega_{k, 0} \rightarrow 0$ ．

 （b）Derive the corresponding formula for the case of a flat universe．Here there is

 （a）follow the saric as the derivation in the $1-\Omega_{m, 0}-\Omega_{\mathrm{rad}, 0}-\Omega_{\mathrm{vac}, 0}$ ． nonrelativistic matter，radiation，and vacuum energy，respectively，and $\Omega_{k, 0} \equiv$

$a_{\text {৯ }}$
 ӘЈӘЧМ

source and the energy flux J ，for the case of a closed universe：

COSMOLOGICAL CONSTANT（10 points）

LLOZ TTVA＇ 2 LAS NGTGOYd 987．8

 -(866I) 600I '9LI quınof ppo?wou

either by eyeball or by some more systematic method.

 output. Note that our ignorance of the absolute brightness of the supernova, of
 wavelengths. In addition, to improve the uniformity of the supernova as standard detectors used to measure the radiation do not have the same sensitivity at all

 corrections related to the spectral sensitivity of the detectors and to the brightness

 you will be plotting "effective magnitude" m vs. redshift z. The magnitude is related z. Your graph should include the error bars. If you plot the Perlmutter et al. data,

Riess was an MIT undergraduate physics major, graduating in 1992.)

(pts)
LIOZ TTVH ' 2 LAGS IGTGOYd 987'8
radius d. The luminosity distance is therefore defined as

$$
\frac{z_{z} p \nu \nabla}{d}=\Gamma
$$

J at a distance d would be an object radiated power P in a spherically symmetric pattern, then the energy flux Euclidean universe. More explicitly, if we lived in a static Euclidean universe and have to be located to result in the observed brightness, if we were living in a static

 where Ryden uses the notation $m-M$ for the distance modulus, and d_{L} is the

(p. 120) as

: ت00Z ${ }^{\circ} \mathrm{TV}$ L'G SSGIY INOYH VLVG DNILLOTd GSOHL YOH THLON

 1

 (i) A matter-dominated universe with $\Omega_{m}=1$.

 web page. The data from Table 5 of the Riess et al. 2004 paper, mentioned above,
Total points for Problem Set 6: 45, plus up to 15 points of extra credit.

 which were arbitrarily set for the sample presented here. Their correct value is not constant derived from Table 5 are all closely related (or even equivalent) quantities "The zeropoint, distance scale, absolute magnitude of the fiducial SN Ia or Hubble concerned with the relative values of the distance moduli, and hence the shape of Riess et al. emphasize that they were not concerned with this value. They were the low side, since the value is usually estimated as $70-72 \mathrm{~km}-\mathrm{sec}^{-1}-\mathrm{Mpc}^{-1}$, but closely reproduced if I choose $H_{0}=66 \mathrm{~km}-\mathrm{sec}^{-1}-\mathrm{Mpc}^{-1}$. This seems a little on In plotting a theoretical curve, you will need to choose a value for H_{0}. Riess
et al. do not specify what value they used, but I found that their curve is most

[^0]: $\left(\left(z_{7}\right) L^{\prime} \nmid\right) d=\left(z_{f} f^{\prime} n\right) d$

