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Prof. Alan Guth

PROBLEM SET 8

DUE DATE: Tuesday, November 29, 2011. The extra credit problems can be
handed in any time before 5 pm on Friday, December 9. (There will also be a
Problem Set 9, due Tuesday, December 6, 2011.)

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology,
Chapter 9 (The Cosmic Microwave Background), except that you can skip Sec-
tion 9.3. Also read “Inflation and the New Era of High-Precision Cosmology,”
by Alan Guth, written for the MIT Physics Department annual newsletter,
2002. It is available at

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf

The data quoted in the article about the nonuniformities of the cosmic mi-
crowave background radiation has since been superceded by much better data;
the conclusions have only gotten stronger.

UPCOMING QUIZ: Thursday, December 8, 2011.

PROBLEM 1: THE HORIZON PROBLEM (8 points)

The success of the big bang predictions for the abundances of the light elements
suggests that the universe was already in thermal equilibrium at one second after
the big bang. At this time, the region which later evolves to become the observed
universe was many horizon distances across. Try to estimate how many. You may
assume that the universe is flat.

PROBLEM 2: THE FLATNESS PROBLEM (7 points)

Although we now know that Ω0 = 1 to an accuracy of a few percent, let us
pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second
after the big bang (about the time of the grand unified theory phase transition), Ω
must have been extraordinarily close to one. Writing Ω = 1− δ , estimate the value
of δ at t = 10−37 sec (using the standard cosmological model).

PROBLEM 3: THE GREISEN-ZATSEPIN-KUZMIN (GZK) CUTOFF,
(10 points)

Very shortly after the CMB was discovered, it was pointed out* that the ex-
istence of the radiation would impose a cutoff on very high energy cosmic rays.

* K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G.T. Zatsepin and V.A. Kuzmin,
Pis’ma Zh. Eksp. Teor. Fiz. 4, 114 (1966) [JETP Lett. 4, 78 (1966)].
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Protons with an energy above about 6 × 1019 eV would have a high cross section
for scattering off the photons of the CMB, limiting the range that they could travel
to something like 50 Mpc. Since there are no known sources within this distance,
there is a prediction that we should not see cosmic rays higher than this energy.

(a) Using the formulas for the energy density and number density of black-body
radiation, calculate the average energy of a photon for radiation with an ar-
bitrary temperature T . Your answer should be in the form of a dimensionless
number times kT . For T = 2.725 K, the temperature of the CMB, what is this
energy, in MeV?

(b) The cross section for proton-photon scattering has a strong enhancement when
the particles have just enough energy to create a very short-lived particle called
the ∆(1232), which has a rest energy of 1232 MeV. The ∆ then decays imme-
diately (in about 10−23 second) to a proton and π0 particle, or a neutron and
a π+ particle:

Suppose that photons with an energy Eγ of 3 times the mean are plentiful
enough to scatter the cosmic ray protons. What energy Ep must the proton
have so that it is possible to create a ∆(1232) when it collides head-on with a
photon of energy Eγ? The mass of the proton is given by mpc

2 = 938.27 MeV.

[Hint: one cannot expect that Ep + Eγ = 1232 MeV, since the conservation
of momentum implies that the final ∆ must have nonzero momentum, and
hence nonzero kinetic energy. One could solve the conservation of energy and
momentum equations simultaneously, but it is easiest to remember that the
square of the energy-momentum four-vector is Lorentz-invariant:

pµ =
(
E

c
, �p

)
=⇒ p2 = |�p|2 − E2

c2
= Lorentz-invariant quantity.

By applying this Lorentz-invariance to the total energy-momentum vector, you
can deduce that

|�ptot|2 − E2
tot

c2
= −E2

rest

c2
,

where Erest is the total energy in the rest frame of the system. When there is
just enough energy to produce a ∆ particle, the energy in the rest frame must
be 1232 MeV. In doing the calculation, you may use the fact that mpc

2 � Eγ,
and that Ep � mpc

2.]
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PROBLEM 4: BIG BANG NUCLEOSYNTHESIS (8 points)

The calculations of big bang nucleosynthesis depend on a large number of
measured parameters. Below you are asked to qualitatively describe the effects of
changing some of these parameters. Include a sentence or two to explain each of
your answers.

(a) Suppose an extra neutrino species is added to the calculation. Would the
predicted helium abundance go up or down?

(b) Suppose the weak interactions were stronger than they actually are, so that
the thermal equilibrium distribution between neutrons and protons were main-
tained until kT ≈ 0.25 MeV. Would the predicted helium abundance be larger
or smaller than in the standard model?

(c) Suppose the proton-neutron mass difference were larger than the actual value
of 1.29 MeV/c2. Would the predicted helium abundance be larger or smaller
than in the standard calculation?

(d) The standard theory of big bang nucleosynthesis assumes that the matter in
the universe was distributed homogeneously during the era of nucleosynthesis,
but the alternative possibility of inhomogeneous big-bang nucleosynthesis has
been discussed since the 1980s. Inhomogeneous nucleosynthesis hinges on the
hypothesis that baryons became clumped during a phase transition at t ≈ 10−6

second, when the hot quark soup converted to a gas of mainly protons, neu-
trons, and in the early stages, pions. The baryons would then be concentrated
in small nuggets, with a comparatively low density outside of these nuggets.
After the phase transition but before nucleosynthesis, the neutrons would have
the opportunity to diffuse away from these nuggets, becoming more or less uni-
formly distributed in space. The protons, however, since they are charged, in-
teract electromagnetically with the plasma that fills the universe, and therefore
have a much shorter mean free path than the neutrons. Most of the protons,
therefore, remain concentrated in the nuggets. Does this scenario result in an
increase or a decrease in the expected helium abundance?

PROBLEM 5: THE DEUTERIUM BOTTLENECK (10 points)

The “deuterium bottleneck” plays a major role in the description of big bang
nucleosynthesis: all of the nuclear reactions involved in nucleosynthesis depend
on deuterium forming at the start, but deuterium does not become stable until
the temperature reaches a rather low value. In this problem we will explore the
statistical mechanics of the deuterium bottleneck.

An ideal gas of classical nonrelativistic particles of type X , in thermal equilib-
rium, has a number density given by

nX = gX

(
mXkT

2πh̄2

)3/2

exp
(
−mXc2

kT

)
exp

(µX

kT

)
. (1)
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Here gX is the number of spin degrees of freedom associated with the particle (like
the factor g = 2 that we encountered with photons), mX is the mass of the particle,
T is the temperature, and µX is the chemical potential of the particle. (h̄ = h/2π,
c, and k have their usual meanings: Planck’s constant, the speed of light, and the
Boltzmann constant.) You may or may not be familiar with chemical potential, but
it will suffice for you to know that it is a concept introduced to treat quantities that
are conserved or at least effectively conserved over the time scales of interest. Such
quantities can have any value in thermal equilibrium, since the value is determined
by the initial conditions and cannot be changed. For each such conserved quantity
Qi one introduces a chemical potential µi. The chemical potential of particle X is
given by

µX =
∑

i

µiq
X
i , (2)

where qX
i is the amount of quantity Qi contained in one particle of type X . The

chemical potentials µi are then adjusted to produce the desired values for each of
the conserved quantities Qi. (In the grand canonical ensemble, which gives the
probability distribution that leads to Eq. (1), each possible state for the system as
a whole is assigned a probability proportional to exp(−E/kT ) exp(

∑
i µiQi), where

E is the energy of the state and Qi is the amount of quantity i in the state.) Note
that Eq. (2) implies that for any allowed reaction, such as

A+B ←→ C , (3)

we are guaranteed that
µA + µB = µC , (4)

since the conserved quantities must balance on the two sides of the equation.

(a) I mentioned in lecture that our textbook writes Eq. (1) incorrectly, omitting
the chemical potential factor. See for example Eqs. (10.11) and (10.12). The
author does, however, have a footnote about this (p. 156), which concludes
that “in most cosmological contexts, as it turns out, the chemical potential is
small enough to be safely neglected.” We can check this statement by using
the author’s formula to calculate the proton density at 3 minutes into the big
bang, at the time of Steven Weinberg’s Fifth Frame, from chapter 5 of The First
Three Minutes. At that time the temperature was T = 109 K. To compare with
the right answer, we make use of the fact that the ratio of the number density
nb of baryons to the number density nγ of photons is estimated from WMAP
data* as

η ≡ nb

nγ
= (6.1± 0.2)× 10−10 . (5)

* D.N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three
year results: implications for cosmology,” Astrophys. J. Suppl. 170, 377 (2007),
also available at http://arxiv.org/abs/astro-ph/0603449. They actually write it as
6.116+0.197

−0.249 × 10−10, but I don’t think that we have any need for the extra digits.
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According to Weinberg, at that time 14% of the baryons were neutrons, with
86% protons. At the risk of appearing impertinent toward the author (but
physicists are known for their impertinence), I will phrase the question this
way: By how many kilo-orders of magnitude is the author’s formula for np in
error?† (Be prepared to have your calculators overflow — if they do, calculate
the logarithm of the answer.)

(b) For deuterium production, the relevant reaction is

n+ p←→ D , (6)

so Eq. (4) tells us that µn + µp = µD. This equality implies that if we form
the ratio

nD

np nn
, (7)

expressing each number density as in Eq. (1), then the chemical potential fac-
tors will cancel out. (This is how the formula is normally used, and this is
how Ryden uses it on p. 180. From here on her treatment is correct, but we
will proceed with slightly more detail.) To describe the bookkeeping for the
reaction of Eq. (6), we need to define our variables. I am using nn, np, and
nD to mean the number densities of free neutrons, free protons, and deuterium
nuclei. nb denotes the total baryon number density, so

nb = nn + np + 2nD . (8)

Finally, I will use nTOT
n and nTOT

p to denote the total number densities of
neutrons and protons respectively, whether free or bound inside deuterium.
We assume that deuterium production happens fast enough so that there is no
further change in the neutron-proton balance while deuterium if forming, so
the ratio

f ≡ nTOT
n

nb
(9)

is fixed. We will describe the extent to which the reaction has proceeded by
specifying the fraction x of neutrons that remain free,

x ≡ nn

nTOT
n

. (10)

Using these definitions, write the equation that equates the ratio nD/(np nn)
to a function of temperature, using Eq. (1) for each of the number densities.

† I have exchanged email with Ryden about this, and she said she would fix it
in the next edition.
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The deuteron is spin-1, with g = 3, and the proton and neutron are each spin-
1
2 , with g = 2. You may approximate mn = mp = mD/2. Manipulate this
formula so that it has the form

F (η, f, x) = G(T ) ,

where F and G are functions that you must determine. You will need the
binding energy of deuterium,

B = (mp +mn −mD)c2 ≈ 2.22 MeV. (11)

This formula determines x as a function of T , or vice versa, but we will not try
to write the function explicitly in either case.

(c) Using your result in part (b), and taking f = 0.14 from Weinberg’s book, find
the value of x, the fraction of neutrons that have been bound in deuterium, at
the time of the Fifth Frame, when T = 109 K. You will probably want to solve
the equation numerically. Two significant figures will be sufficient.

(d) Again using your result from part (b), and assuming that f = 0.14 is still
accurate, find the temperature at which x = 1

2
, i.e., the temperature for which

half of the neutrons have become combined into deuterium. Again you will
presumably find the answer numerically, and 2 significant figures will be suffi-
cient. What is the value of kT at this temperature. Qualitatively, what feature
of the calculation causes this number to be small compared to B.

PROBLEM 6: A ZERO MASS DENSITY UNIVERSE— GENERAL
RELATIVITY DESCRIPTION

(This problem is not required, but can be done for 7 points extra credit.)

In this problem and the next we will explore the connections between special
relativity and the standard cosmological model which we have been discussing.
Although we have not studied general relativity in detail, the description of the
cosmological model that we have been using is precisely that of general relativity.
In the limit of zero mass density the effects of gravity will become negligible, and
the formulas must then be compatible with the special relativity which we discussed
at the beginning of the course. The goal of these two problems is to see exactly
how this happens.

These two problems will emphasize the notion that a coordinate system is noth-
ing more than an arbitrary system of designating points in spacetime. A physical
object might therefore look very different in two different coordinate systems, but
the answer to any well-defined physical question must turn out the same regardless
of which coordinate system is used in the calculation.



8.286 PROBLEM SET 8, FALL 2011 p. 7

From the general relativity point of view, the model universe is described by
the Robertson-Walker spacetime metric:

ds2
ST = −c2dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
.

I have included the subscript “ST” to remind us that this formula gives the full
spacetime metric, as opposed to the purely spatial metric which we discussed earlier.
This formula describes the analogue of the “invariant interval” of special relativity,
measured between the spacetime points (t, r, θ, φ) and (t+dt, r+dr, θ+dθ, φ+dφ).

The evolution of the model universe is governed by the general relation

(
ȧ

a

)2

=
8π
3
Gρ− kc2

a2
,

except in this case the mass density term is to be set equal to zero.

(a) Since the mass density is zero, it is certainly less than the critical mass density,
so the universe is open. We can then choose k = −1. Derive an explicit
expression for the scale factor a(t).

(b) Suppose that a light pulse is emitted by a comoving source at time te, and is
received by a comoving observer at time to. Find the Doppler shift ratio z.

(c) Consider a light pulse that leaves the origin at time te. In an infinitesimal time
interval dt the pulse will travel a physical distance ds = cdt. Since the pulse is
traveling in the radial direction (i.e., with dθ = dφ = 0), one has

cdt = a(t)
dr√

1− kr2
.

Note that this is a slight generalization of Eq. (3.8), which applies for the case
of a Euclidean geometry (k = 0). Derive a formula for the trajectory r(t) of
the light pulse. You may find the following integral useful:

∫
dr√
1 + r2

= sinh−1 r .

(d) Use these results to express the redshift z in terms of the coordinate r of the
observer. If you have done it right, your answer will be independent of te. (In
the special relativity description that will follow, it will be obvious why the
redshift must be independent of te. Can you see the reason now?)
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PROBLEM 7: A ZERO MASS DENSITY UNIVERSE— SPECIAL
RELATIVITY DESCRIPTION

(This problem is also not required, but can be done for 8 points extra credit.)

In this problem we will describe the same model universe as in the previous
problem, but we will use the standard formulation of special relativity. We will
therefore use an inertial coordinate system, rather than the comoving system of the
previous problem. Please note, however, that in the usual case in which gravity is
significant, there is no inertial coordinate system. Only when gravity is absent does
such a coordinate system exist.

To distinguish the two systems, we will use primes to denote the inertial co-
ordinates: (t′, x′, y′, z′). Since the problem is spherically symmetric, we will also
introduce “polar inertial coordinates” (r′, θ′, φ′) which are related to the Cartesian
inertial coordinates by the usual relations:

x′ = r′ sin θ′ cosφ′

y′ = r′ sin θ′ sinφ′

z′ = r′ cos θ′ .

In terms of these polar inertial coordinates, the invariant spacetime interval of
special relativity can be written as

ds2
ST = −c2dt′2 + dr′2 + r′2

(
dθ′2 + sin2 θ′dφ′2) .

For purposes of discussion we will introduce a set of comoving observers which
travel along with the matter in the universe, following the Hubble expansion pattern.
(Although the matter has a negligible mass density, I will assume that enough of it
exists to define a velocity at any point in space.) These trajectories must all meet
at some spacetime point corresponding to the instant of the big bang, and we will
take that spacetime point to be the origin of the coordinate system. Since there
are no forces acting in this model universe, the comoving observers travel on lines
of constant velocity (all emanating from the origin). The model universe is then
confined to the future light-cone of the origin.

(a) The cosmic time variable t used in the previous problem can be defined as the
time measured on the clocks of the comoving observers, starting at the instant
of the big bang. Using this definition and your knowledge of special relativity,
find the value of the cosmic time t for given values of the inertial coordinates—
i.e., find t(t′, r′). [Hint: first find the velocity of a comoving observer who
starts at the origin and reaches the spacetime point (t′, r′, θ′, φ′). Note that
the rotational symmetry makes θ′ and φ′ irrelevant, so one can examine motion
along a single axis.]
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(b) Let us assume that angular coordinates have the same meaning in the two
coordinate systems, so that θ = θ′ and φ = φ′. We will verify in part (d)
below that this assumption is correct. Using this assumption, find the value
of the comoving radial coordinate r in terms of the inertial coordinates— i.e.,
find r(t′, r′). [Hint: consider an infinitesimal line segment which extends in
the θ-direction, with constant values of t, r, and φ. Use the fact that this line
segment must have the same physical length, regardless of which coordinate
system is used to describe it.] Draw a graph of the t′-r′ plane, and sketch in
lines of constant t and lines of constant r.

(c) Show that the radial coordinate r of the comoving system is related to the
magnitude of the velocity in the inertial system by

r =
v/c√

1− v2/c2
.

Suppose that a light pulse is emitted at the spatial origin (r′ = 0, t′ =
anything) and is received by another comoving observer who is traveling at
speed v. With what redshift z is the pulse received? Express z as a function
of r, and compare your answer to part (d) of the previous problem.

(d) In this part we will show that the metric of the comoving coordinate system
can be derived from the metric of special relativity, a fact which completely
establishes the consistency of the two descriptions. To do this, first write out
the equations of transformation in the form:

t′ =?

r′ =?

θ′ =?

φ′ =? ,

where the question marks denote expressions in t, r, θ, and φ. Now consider
an infinitesimal spacetime line segment described in the comoving system by
its two endpoints: (t, r, θ, φ) and (t + dt, r + dr, θ + dθ, φ + dφ). Calculating
to first order in the infinitesimal quantities, find the separation between the
coordinates of the two endpoints in the inertial coordinate system— i.e., find
dt′, dr′, dθ′, and dφ′. Now insert these expressions into the special relativity
expression for the invariant interval ds2

ST , and if you have made no mistakes
you will recover the Robertson-Walker metric used in the previous problem.
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DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE:

The two problems above demonstrate how the general relativistic description
of cosmology can reduce to special relativity when gravity is unimportant, but it
provides a misleading picture of the big-bang singularity which I would like to clear
up.

First, let me point out that the mass density of the universe increases as one
looks backward in time. If the mass density parameter Ω ≡ ρ/ρc for our universe
has a value of 0.2, at the low end of the empirically allowed range, then the universe
today can be approximately modeled by the zero mass density universe. However,
provided that Ω is greater than zero today, the zero mass density model cannot be
taken as a valid model for the early history of the universe.

In the zero mass density model, the big-bang “singularity” is a single spacetime
point which is in fact not singular at all. In the comoving description the scale factor
a(t) equals zero at this time, but in the inertial system one sees that the spacetime
metric is really just the usual smooth metric of special relativity, expressed in a
peculiar set of coordinates. In this model it is unnatural to think of t = 0 as really
defining the beginning of anything, since the the future light-cone of the origin
connects smoothly to the rest of the spacetime.

In the standard model of the universe with a nonzero mass density, the behavior
of the singularity is very different. First of all, it really is singular— one can
mathematically prove that there is no coordinate system in which the singularity
disappears. Thus, the spacetime cannot be joined smoothly onto anything that may
have happened earlier.

The differences between the singularities in the two models can also be seen by
looking at the horizon distance. We learned in Lecture Notes 4 that light can travel
only a finite distance from the time of the big bang to some arbitrary time t, and
that this “horizon distance” is given by

)p(t) = a(t)
∫ t

0

c

a(t′)
dt′ .

For the scale factor of the zero mass density universe as found in the problem, one
can see that this distance is infinite for any t— for the zero mass density model
there is no horizon. For a radiation-dominated model, however, there is a finite
horizon distance given by 2ct.

Finally, in the zero mass density model the big bang occurs at a single point
in spacetime, but for a nonzero mass density model it seems better to think of
the big bang as occurring everywhere at once. In terms of the Robertson-Walker
coordinates, the singularity occurs at t = 0, for all values of r, θ, and φ. There
is a subtle issue, however, because with a(t = 0) = 0, all of these points have
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zero distance from each other. Mathematically the locus t = 0 in a nonzero mass
density model is too singular to even be considered part of the space, which consists
of all values of t > 0. Thus, the question of whether the singularity is a single
point is not well defined. For any t > 0 the issue is of course clear— the space
is homogeneous and infinite (for the case of the open universe). If one wishes to
ignore the mathematical subtleties and call the singularity at t = 0 a single point,
then one certainly must remember that the singularity makes it a very unusual
point. Objects emanating from this “point” can achieve an infinite separation in
an arbitrarily short length of time.

Total points for Problem Set 8: 43, plus up to 15 points extra credit.


