
M
A
SSA

C
H
U
SE

T
T
S
IN

ST
IT

U
T
E

O
F
T
E
C
H
N
O
L
O
G
Y

P
hysics

D
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P
hysics

8.286:
T
he

E
arly

U
niverse

N
ovem

ber
21,

2011
P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

8

D
U

E
D

A
T

E
:
T
uesday,

N
ovem

ber
29,

2011.
T
he

extra
credit

problem
s
can

be
handed

in
any

tim
e
before

5
pm

on
Friday,

D
ecem

ber
9.

(T
here

w
illalso

be
a

P
roblem

Set
9,

due
T
uesday,

D
ecem

ber
6,

2011.)

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:
B
arbara

R
yden,

In
tro

d
u
ctio

n
to

C
o
sm

o
lo

g
y,

C
hapter

9
(T

he
C

osm
ic

M
icrow

ave
B
ackground),except

that
you

can
skip

Sec-
tion

9.3.
A
lso

read
“Inflation

and
the

N
ew

E
ra

of
H
igh-P

recision
C
osm

ology,”
by

A
lan

G
uth,

w
ritten

for
the

M
IT

P
hysics

D
epartm

ent
annual

new
sletter,

2002.
It

is
available

at
http://w

eb.m
it.edu/physics/new

s/physicsatm
it/physicsatm

it_02_cosm
ology.pdf

T
he

data
quoted

in
the

article
about

the
nonuniform

ities
of

the
cosm

ic
m
i-

crow
ave

background
radiation

has
since

been
superceded

by
m
uch

better
data;

the
conclusions

have
only

gotten
stronger.

U
P

C
O

M
IN

G
Q

U
IZ

:
T
hursday,

D
ecem

ber
8,2011.

P
R

O
B

L
E
M

1:
T

H
E

H
O

R
IZ

O
N

P
R

O
B

L
E
M

(8
points)

T
he

success
ofthe

big
bang

predictions
for

the
abundances

ofthe
light

elem
ents

suggests
that

the
universe

w
as

already
in

therm
al

equilibrium
at

one
second

after
the

big
bang.

A
t
this

tim
e,

the
region

w
hich

later
evolves

to
becom

e
the

observed
universe

w
as

m
any

horizon
distances

across.
T
ry

to
estim

ate
how

m
any.

Y
ou

m
ay

assum
e
that

the
universe

is
flat.

P
R

O
B

L
E
M

2:
T

H
E

F
L
A

T
N

E
S
S

P
R

O
B

L
E
M

(7
points)

A
lthough

w
e
now

know
that

Ω
0
=

1
to

an
accuracy

of
a
few

percent,
let

us
pretend

that
the

value
ofΩ

today
is
0.1.

It
nonetheless

follow
s
that

at
10 −

3
7
second

after
the

big
bang

(about
the

tim
e
of

the
grand

unified
theory

phase
transition),Ω

m
ust

have
been

extraordinarily
close

to
one.

W
riting

Ω
=

1−
δ
,estim

ate
the

value
of

δ
at

t
=

10 −
3
7
sec

(using
the

standard
cosm

ologicalm
odel).

P
R

O
B

L
E
M

3:
T

H
E

G
R

E
IS

E
N

-Z
A

T
S
E
P

IN
-K

U
Z
M

IN
(G

Z
K

)
C

U
T

O
F
F
,

(10
points)

V
ery

shortly
after

the
C
M
B

w
as

discovered,
it

w
as

pointed
out*

that
the

ex-
istence

of
the

radiation
w
ould

im
pose

a
cutoff

on
very

high
energy

cosm
ic

rays.

*
K
.
G
reisen,

P
hys.

R
ev.

Lett.
16,

748
(1966);G

.T
.Z

atsepin
and

V
.A

.K
uzm

in,
P
is’m

a
Z
h.

E
ksp.

T
eor.

F
iz.

4,
114

(1966)
[JE

T
P

Lett.
4,

78
(1966)].
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P
rotons

w
ith

an
energy

above
about

6×
10

1
9
eV

w
ould

have
a
high

cross
section

for
scattering

off
the

photons
ofthe

C
M
B
,lim

iting
the

range
that

they
could

travel
to

som
ething

like
50

M
pc.

Since
there

are
no

know
n
sources

w
ithin

this
distance,

there
is

a
prediction

that
w
e
should

not
see

cosm
ic

rays
higher

than
this

energy.

(a)
U
sing

the
form

ulas
for

the
energy

density
and

num
ber

density
of

black-body
radiation,

calculate
the

average
energy

of
a
photon

for
radiation

w
ith

an
ar-

bitrary
tem

perature
T
.
Y
our

answ
er

should
be

in
the

form
of

a
dim

ensionless
num

ber
tim

es
k
T
.
For

T
=

2
.725

K
,the

tem
perature

ofthe
C
M
B
,w

hat
is
this

energy,
in

M
eV

?

(b)
T
he

cross
section

for
proton-photon

scattering
has

a
strong

enhancem
ent

w
hen

the
particles

have
just

enough
energy

to
create

a
very

short-lived
particle

called
the

∆
(1232),w

hich
has

a
rest

energy
of

1232
M
eV

.
T
he

∆
then

decays
im

m
e-

diately
(in

about
10 −

2
3
second)

to
a
proton

and
π

0
particle,

or
a
neutron

and
a
π

+
particle:

Suppose
that

photons
w
ith

an
energy

E
γ
of

3
tim

es
the

m
ean

are
plentiful

enough
to

scatter
the

cosm
ic

ray
protons.

W
hat

energy
E

p
m
ust

the
proton

have
so

that
it

is
possible

to
create

a
∆
(1232)

w
hen

it
collides

head-on
w
ith

a
photon

ofenergy
E

γ ?
T
he

m
ass

ofthe
proton

is
given

by
m

p c
2
=

938
.27

M
eV

.

[H
int:

one
cannot

expect
that

E
p
+

E
γ
=

1232
M
eV

,
since

the
conservation

of
m
om

entum
im

plies
that

the
final

∆
m
ust

have
nonzero

m
om

entum
,
and

hence
nonzero

kinetic
energy.

O
ne

could
solve

the
conservation

of
energy

and
m
om

entum
equations

sim
ultaneously,

but
it

is
easiest

to
rem

em
ber

that
the

square
of

the
energy-m

om
entum

four-vector
is

L
orentz-invariant:

p
µ
= (

Ec
,�p )

=⇒
p
2
=
|�p| 2−

E
2

c
2

=
L
orentz-invariant

quantity.

B
y
applying

this
L
orentz-invariance

to
the

totalenergy-m
om

entum
vector,you

can
deduce

that

|�p
to

t | 2−
E

2to
t

c
2

=
−
E

2re
st

c
2

,

w
here

E
re

st
is

the
totalenergy

in
the

rest
fram

e
of

the
system

.
W

hen
there

is
just

enough
energy

to
produce

a
∆

particle,the
energy

in
the

rest
fram

e
m
ust

be
1232

M
eV

.
In

doing
the

calculation,you
m
ay

use
the

fact
that

m
p c

2�
E

γ ,
and

that
E

p �
m

p c
2.]
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P
R

O
B

L
E
M

4:
B

IG
B

A
N

G
N

U
C

L
E
O

S
Y

N
T

H
E
S
IS

(8
points)

T
he

calculations
of

big
bang

nucleosynthesis
depend

on
a
large

num
ber

of
m
easured

param
eters.

B
elow

you
are

asked
to

qualitatively
describe

the
effects

of
changing

som
e
of

these
param

eters.
Include

a
sentence

or
tw

o
to

explain
each

of
your

answ
ers.

(a)
Suppose

an
extra

neutrino
species

is
added

to
the

calculation.
W
ould

the
predicted

helium
abundance

go
up

or
dow

n?

(b)
Suppose

the
w
eak

interactions
w
ere

stronger
than

they
actually

are,
so

that
the

therm
alequilibrium

distribution
betw

een
neutrons

and
protons

w
ere

m
ain-

tained
until

k
T
≈

0
.25

M
eV

.W
ould

the
predicted

helium
abundance

be
larger

or
sm

aller
than

in
the

standard
m
odel?

(c)
Suppose

the
proton-neutron

m
ass

difference
w
ere

larger
than

the
actual

value
of

1.29
M
eV

/c
2.

W
ould

the
predicted

helium
abundance

be
larger

or
sm

aller
than

in
the

standard
calculation?

(d)
T
he

standard
theory

of
big

bang
nucleosynthesis

assum
es

that
the

m
atter

in
the

universe
w
as

distributed
hom

ogeneously
during

the
era

of
nucleosynthesis,

but
the

alternative
possibility

of
inhom

ogeneous
big-bang

nucleosynthesis
has

been
discussed

since
the

1980s.
Inhom

ogeneous
nucleosynthesis

hinges
on

the
hypothesis

that
baryons

becam
e
clum

ped
during

a
phase

transition
at

t≈
10 −

6

second,
w
hen

the
hot

quark
soup

converted
to

a
gas

of
m
ainly

protons,
neu-

trons,and
in

the
early

stages,pions.
T
he

baryons
w
ould

then
be

concentrated
in

sm
all

nuggets,
w
ith

a
com

paratively
low

density
outside

of
these

nuggets.
A
fter

the
phase

transition
but

before
nucleosynthesis,the

neutrons
w
ould

have
the

opportunity
to

diffuse
aw

ay
from

these
nuggets,becom

ing
m
ore

or
less

uni-
form

ly
distributed

in
space.

T
he

protons,
how

ever,
since

they
are

charged,
in-

teract
electrom

agnetically
w
ith

the
plasm

a
that

fills
the

universe,and
therefore

have
a
m
uch

shorter
m
ean

free
path

than
the

neutrons.
M
ost

of
the

protons,
therefore,

rem
ain

concentrated
in

the
nuggets.

D
oes

this
scenario

result
in

an
increase

or
a
decrease

in
the

expected
helium

abundance?

P
R

O
B

L
E
M

5:
T

H
E

D
E
U

T
E
R

IU
M

B
O

T
T

L
E
N

E
C

K
(10

points)

T
he

“deuterium
bottleneck”

plays
a
m
ajor

role
in

the
description

of
big

bang
nucleosynthesis:

all
of

the
nuclear

reactions
involved

in
nucleosynthesis

depend
on

deuterium
form

ing
at

the
start,

but
deuterium

does
not

becom
e
stable

until
the

tem
perature

reaches
a
rather

low
value.

In
this

problem
w
e
w
ill

explore
the

statisticalm
echanics

of
the

deuterium
bottleneck.

A
n
idealgas

of
classicalnonrelativistic

particles
of

type
X
,in

therm
alequilib-

rium
,
has

a
num

ber
density

given
by

n
X

=
g

X (
m

X
k
T

2
π
h̄

2 )
3
/
2exp (−

m
X
c
2

k
T

)
exp (

µ
X

k
T )

.
(1)
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H
ere

g
X

is
the

num
ber

of
spin

degrees
of

freedom
associated

w
ith

the
particle

(like
the

factor
g
=

2
that

w
e
encountered

w
ith

photons),
m

X
is
the

m
ass

ofthe
particle,

T
is

the
tem

perature,
and

µ
X

is
the

chem
ical

potential
of

the
particle.

(h̄
=

h
/2

π
,

c,
and

k
have

their
usual

m
eanings:

P
lanck’s

constant,
the

speed
of

light,
and

the
B
oltzm

ann
constant.)

Y
ou

m
ay

or
m
ay

not
be

fam
iliar

w
ith

chem
icalpotential,but

it
w
illsuffi

ce
for

you
to

know
that

it
is
a
concept

introduced
to

treat
quantities

that
are

conserved
or

at
least

effectively
conserved

over
the

tim
e
scales

of
interest.

Such
quantities

can
have

any
value

in
therm

alequilibrium
,since

the
value

is
determ

ined
by

the
initialconditions

and
cannot

be
changed.

For
each

such
conserved

quantity
Q

i
one

introduces
a
chem

ical
potential

µ
i .

T
he

chem
ical

potential
of

particle
X

is
given

by
µ

X
= ∑

i

µ
i q

Xi
,

(2)

w
here

q
Xi

is
the

am
ount

of
quantity

Q
i
contained

in
one

particle
of

type
X
.
T
he

chem
ical

potentials
µ

i
are

then
adjusted

to
produce

the
desired

values
for

each
of

the
conserved

quantities
Q

i .
(In

the
grand

canonical
ensem

ble,
w
hich

gives
the

probability
distribution

that
leads

to
E
q.

(1),
each

possible
state

for
the

system
as

a
w
hole

is
assigned

a
probability

proportionalto
exp(−

E
/
k
T
)exp( ∑

i µ
i Q

i ),w
here

E
is

the
energy

of
the

state
and

Q
i
is

the
am

ount
of

quantity
i
in

the
state.)

N
ote

that
E
q.(2)

im
plies

that
for

any
allow

ed
reaction,such

as

A
+

B
←→

C
,

(3)

w
e
are

guaranteed
that

µ
A
+

µ
B
=

µ
C

,
(4)

since
the

conserved
quantities

m
ust

balance
on

the
tw

o
sides

of
the

equation.

(a)
I
m
entioned

in
lecture

that
our

textbook
w
rites

E
q.

(1)
incorrectly,

om
itting

the
chem

ical
potential

factor.
See

for
exam

ple
E
qs.

(10.11)
and

(10.12).
T
he

author
does,

how
ever,

have
a
footnote

about
this

(p.
156),

w
hich

concludes
that

“in
m
ost

cosm
ological

contexts,
as

it
turns

out,
the

chem
ical

potential
is

sm
all

enough
to

be
safely

neglected.”
W
e
can

check
this

statem
ent

by
using

the
author’s

form
ula

to
calculate

the
proton

density
at

3
m
inutes

into
the

big
bang,at

the
tim

e
ofSteven

W
einberg’s

F
ifth

Fram
e,from

chapter
5
ofT

he
F
irst

T
hree

M
inutes.

A
t
that

tim
e
the

tem
perature

w
as

T
=

10
9
K
.T

o
com

pare
w
ith

the
right

answ
er,

w
e
m
ake

use
of

the
fact

that
the

ratio
of

the
num

ber
density

n
b
of

baryons
to

the
num

ber
density

n
γ
of

photons
is

estim
ated

from
W

M
A
P

data*
as

η≡
n

b

n
γ
=

(6
.1±

0
.2)×

10 −
1
0
.

(5)

*
D
.N

.
Spergel

et
al.,

“W
ilkinson

M
icrow

ave
A
nisotropy

P
robe

(W
M
A
P
)
three

year
results:

im
plications

for
cosm

ology,”
A

strophys.
J.

Suppl.
170,

377
(2007),

also
available

at
http://arxiv.org/abs/astro-ph/0603449.

T
hey

actually
w
rite

it
as

6
.116

+
0
.1

9
7

−
0
.2

4
9 ×

10 −
1
0,

but
I
don’t

think
that

w
e
have

any
need

for
the

extra
digits.
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A
ccording

to
W
einberg,

at
that

tim
e
14%

of
the

baryons
w
ere

neutrons,
w
ith

86%
protons.

A
t
the

risk
of

appearing
im

pertinent
tow

ard
the

author
(but

physicists
are

know
n
for

their
im

pertinence),
I
w
ill

phrase
the

question
this

w
ay:

B
y
how

m
any

kilo-orders
of

m
agnitude

is
the

author’s
form

ula
for

n
p
in

error?†
(B

e
prepared

to
have

your
calculators

overflow
—

if
they

do,calculate
the

logarithm
of

the
answ

er.)

(b)
For

deuterium
production,

the
relevant

reaction
is

n
+

p←→
D

,
(6)

so
E
q.

(4)
tells

us
that

µ
n
+

µ
p
=

µ
D
.
T
his

equality
im

plies
that

if
w
e
form

the
ratio

n
D

n
p
n

n
,

(7)

expressing
each

num
ber

density
as

in
E
q.(1),then

the
chem

ical
potentialfac-

tors
w
ill

cancel
out.

(T
his

is
how

the
form

ula
is

norm
ally

used,
and

this
is

how
R
yden

uses
it

on
p.

180.
From

here
on

her
treatm

ent
is

correct,
but

w
e

w
ill

proceed
w
ith

slightly
m
ore

detail.)
T
o
describe

the
bookkeeping

for
the

reaction
of

E
q.

(6),
w
e
need

to
define

our
variables.

I
am

using
n

n ,
n

p ,
and

n
D

to
m
ean

the
num

ber
densities

offree
neutrons,free

protons,and
deuterium

nuclei.
n

b
denotes

the
totalbaryon

num
ber

density,
so

n
b
=

n
n
+

n
p
+
2
n

D
.

(8)

F
inally,

I
w
ill

use
n

T
O

T
n

and
n

T
O

T
p

to
denote

the
total

num
ber

densities
of

neutrons
and

protons
respectively,

w
hether

free
or

bound
inside

deuterium
.

W
e
assum

e
that

deuterium
production

happens
fast

enough
so

that
there

is
no

further
change

in
the

neutron-proton
balance

w
hile

deuterium
if

form
ing,

so
the

ratio

f
≡

n
T

O
T

nn
b

(9)

is
fixed.

W
e
w
ill

describe
the

extent
to

w
hich

the
reaction

has
proceeded

by
specifying

the
fraction

x
of

neutrons
that

rem
ain

free,

x≡
n

n

n
T

O
T

n

.
(10)

U
sing

these
definitions,

w
rite

the
equation

that
equates

the
ratio

n
D
/(n

p
n

n )
to

a
function

of
tem

perature,
using

E
q.

(1)
for

each
of

the
num

ber
densities.

†
I
have

exchanged
em

ail
w
ith

R
yden

about
this,

and
she

said
she

w
ould

fix
it

in
the

next
edition.
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T
he

deuteron
is
spin-1,w

ith
g
=

3,and
the

proton
and

neutron
are

each
spin-

12 ,
w
ith

g
=

2.
Y
ou

m
ay

approxim
ate

m
n
=

m
p
=

m
D
/2.

M
anipulate

this
form

ula
so

that
it

has
the

formF
(η
,f

,x)
=

G
(T

)
,

w
here

F
and

G
are

functions
that

you
m
ust

determ
ine.

Y
ou

w
ill

need
the

binding
energy

of
deuterium

,

B
=

(m
p
+

m
n −

m
D
)c

2≈
2
.22

M
eV

.
(11)

T
his

form
ula

determ
ines

x
as

a
function

of
T
,or

vice
versa,but

w
e
w
illnot

try
to

w
rite

the
function

explicitly
in

either
case.

(c)
U
sing

your
result

in
part

(b),and
taking

f
=

0
.14

from
W
einberg’s

book,find
the

value
of

x,the
fraction

of
neutrons

that
have

been
bound

in
deuterium

,at
the

tim
e
of

the
F
ifth

Fram
e,w

hen
T

=
10

9
K
.
Y
ou

w
illprobably

w
ant

to
solve

the
equation

num
erically.

T
w
o
significant

figures
w
ill

be
suffi

cient.

(d)
A
gain

using
your

result
from

part
(b),

and
assum

ing
that

f
=

0
.14

is
still

accurate,find
the

tem
perature

at
w
hich

x
=

12 ,i.e.,the
tem

perature
for

w
hich

half
of

the
neutrons

have
becom

e
com

bined
into

deuterium
.

A
gain

you
w
ill

presum
ably

find
the

answ
er

num
erically,

and
2
significant

figures
w
ill

be
suffi

-
cient.

W
hat

is
the

value
of

k
T

at
this

tem
perature.

Q
ualitatively,w

hat
feature

of
the

calculation
causes

this
num

ber
to

be
sm

all
com

pared
to

B
.
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(T
his

problem
is

not
required,

but
can

be
done

for
7

points
extra

credit.)

In
this

problem
and

the
next

w
e
w
ill

explore
the

connections
betw

een
special

relativity
and

the
standard

cosm
ological

m
odel

w
hich

w
e
have

been
discussing.

A
lthough

w
e
have

not
studied

general
relativity

in
detail,

the
description

of
the

cosm
ological

m
odel

that
w
e
have

been
using

is
precisely

that
of

general
relativity.

In
the

lim
it

of
zero

m
ass

density
the

effects
of

gravity
w
ill

becom
e
negligible,

and
the

form
ulas

m
ust

then
be

com
patible

w
ith

the
specialrelativity

w
hich

w
e
discussed

at
the

beginning
of

the
course.

T
he

goal
of

these
tw

o
problem

s
is

to
see

exactly
how

this
happens.

T
hese

tw
o
problem

s
w
illem

phasize
the

notion
that

a
coordinate

system
is
noth-

ing
m
ore

than
an

arbitrary
system

of
designating

points
in

spacetim
e.

A
physical

ob
ject

m
ight

therefore
look

very
different

in
tw

o
different

coordinate
system

s,
but

the
answ

er
to

any
w
ell-defined

physicalquestion
m
ust

turn
out

the
sam

e
regardless

of
w
hich

coordinate
system

is
used

in
the

calculation.
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From
the

general
relativity

point
of

view
,
the

m
odel

universe
is

described
by

the
R
obertson-W

alker
spacetim

e
m
etric:

d
s
2S
T
=
−
c
2d

t
2
+

a
2(t) {

d
r
2

1−
k
r
2
+

r
2 (d

θ
2
+

sin
2
θ
d
φ

2 ) }
.

I
have

included
the

subscript
“ST

”
to

rem
ind

us
that

this
form

ula
gives

the
full

spacetim
e
m
etric,as

opposed
to

the
purely

spatialm
etric

w
hich

w
e
discussed

earlier.
T
his

form
ula

describes
the

analogue
of

the
“invariant

interval”
of

specialrelativity,
m
easured

betw
een

the
spacetim

e
points

(t,r,θ
,φ)

and
(t+

d
t,r

+
d
r,θ

+
d
θ
,φ

+
d
φ).

T
he

evolution
of

the
m
odel

universe
is

governed
by

the
general

relation

(
ȧa )

2

=
8
π3
G
ρ−

k
c
2

a
2

,

except
in

this
case

the
m
ass

density
term

is
to

be
set

equal
to

zero.

(a)
Since

the
m
ass

density
is
zero,it

is
certainly

less
than

the
criticalm

ass
density,

so
the

universe
is

open.
W
e
can

then
choose

k
=
−
1.

D
erive

an
explicit

expression
for

the
scale

factor
a(t).

(b)
Suppose

that
a
light

pulse
is

em
itted

by
a
com

oving
source

at
tim

e
t
e ,

and
is

received
by

a
com

oving
observer

at
tim

e
t
o .

F
ind

the
D
oppler

shift
ratio

z.

(c)
C
onsider

a
light

pulse
that

leaves
the

origin
at

tim
e
t
e .

In
an

infinitesim
altim

e
interval

d
t
the

pulse
w
illtravela

physicaldistance
d
s
=

cd
t.

Since
the

pulse
is

traveling
in

the
radialdirection

(i.e.,w
ith

d
θ
=

d
φ
=

0),one
has

cd
t
=

a(t)
d
r

√
1−

k
r
2
.

N
ote

that
this

is
a
slight

generalization
of

E
q.(3.8),w

hich
applies

for
the

case
of

a
E
uclidean

geom
etry

(k
=

0).
D
erive

a
form

ula
for

the
trajectory

r(t)
of

the
light

pulse.
Y
ou

m
ay

find
the

follow
ing

integraluseful:

∫
d
r

√
1
+

r
2
=

sinh −
1
r
.

(d)
U
se

these
results

to
express

the
redshift

z
in

term
s
of

the
coordinate

r
of

the
observer.

If
you

have
done

it
right,

your
answ

er
w
illbe

independent
of

t
e .

(In
the

special
relativity

description
that

w
ill

follow
,
it

w
ill

be
obvious

w
hy

the
redshift

m
ust

be
independent

of
t
e .

C
an

you
see

the
reason

now
?)
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(T
his

problem
is

also
not

required,
but

can
be

done
for

8
points

extra
credit.)

In
this

problem
w
e
w
ill

describe
the

sam
e
m
odel

universe
as

in
the

previous
problem

,
but

w
e
w
ill

use
the

standard
form

ulation
of

special
relativity.

W
e
w
ill

therefore
use

an
inertialcoordinate

system
,rather

than
the

com
oving

system
ofthe

previous
problem

.
P
lease

note,
how

ever,
that

in
the

usual
case

in
w
hich

gravity
is

significant,there
is
no

inertialcoordinate
system

.
O
nly

w
hen

gravity
is
absent

does
such

a
coordinate

system
exist.

T
o
distinguish

the
tw

o
system

s,
w
e
w
ill

use
prim

es
to

denote
the

inertial
co-

ordinates:
(t ′,x ′,y ′,z ′).

Since
the

problem
is

spherically
sym

m
etric,

w
e
w
ill

also
introduce

“polar
inertialcoordinates”

(r ′,θ ′,φ ′)
w
hich

are
related

to
the

C
artesian

inertialcoordinates
by

the
usual

relations:

x ′=
r ′sin

θ ′cos
φ ′

y ′=
r ′sin

θ ′sin
φ ′

z ′=
r ′cos

θ ′
.

In
term

s
of

these
polar

inertial
coordinates,

the
invariant

spacetim
e
interval

of
special

relativity
can

be
w
ritten

as

d
s
2S
T
=
−
c
2d

t ′2
+

d
r ′2

+
r ′2 (d

θ ′2
+

sin
2
θ ′d

φ ′2 )
.

For
purposes

of
discussion

w
e
w
illintroduce

a
set

of
com

oving
observers

w
hich

travelalong
w
ith

the
m
atter

in
the

universe,follow
ing

the
H
ubble

expansion
pattern.

(A
lthough

the
m
atter

has
a
negligible

m
ass

density,I
w
illassum

e
that

enough
of

it
exists

to
define

a
velocity

at
any

point
in

space.)
T
hese

trajectories
m
ust

all
m
eet

at
som

e
spacetim

e
point

corresponding
to

the
instant

of
the

big
bang,

and
w
e
w
ill

take
that

spacetim
e
point

to
be

the
origin

of
the

coordinate
system

.
Since

there
are

no
forces

acting
in

this
m
odel

universe,
the

com
oving

observers
travel

on
lines

of
constant

velocity
(all

em
anating

from
the

origin).
T
he

m
odel

universe
is

then
confined

to
the

future
light-cone

of
the

origin.

(a)
T
he

cosm
ic

tim
e
variable

t
used

in
the

previous
problem

can
be

defined
as

the
tim

e
m
easured

on
the

clocks
of

the
com

oving
observers,

starting
at

the
instant

of
the

big
bang.

U
sing

this
definition

and
your

know
ledge

of
special

relativity,
find

the
value

ofthe
cosm

ic
tim

e
t
for

given
values

ofthe
inertialcoordinates—

i.e.,
find

t(t ′,r ′).
[H

int:
first

find
the

velocity
of

a
com

oving
observer

w
ho

starts
at

the
origin

and
reaches

the
spacetim

e
point

(t ′,r ′,θ ′,φ ′).
N
ote

that
the

rotationalsym
m
etry

m
akes

θ ′and
φ ′irrelevant,so

one
can

exam
ine

m
otion

along
a
single

axis.]
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(b)
L
et

us
assum

e
that

angular
coordinates

have
the

sam
e
m
eaning

in
the

tw
o

coordinate
system

s,
so

that
θ
=

θ ′
and

φ
=

φ ′.
W
e
w
ill

verify
in

part
(d)

below
that

this
assum

ption
is

correct.
U
sing

this
assum

ption,
find

the
value

of
the

com
oving

radial
coordinate

r
in

term
s
of

the
inertial

coordinates—
i.e.,

find
r(t ′,r ′).

[H
int:

consider
an

infinitesim
al

line
segm

ent
w
hich

extends
in

the
θ-direction,

w
ith

constant
values

of
t,

r,
and

φ.
U
se

the
fact

that
this

line
segm

ent
m
ust

have
the

sam
e
physical

length,
regardless

of
w
hich

coordinate
system

is
used

to
describe

it.]
D
raw

a
graph

of
the

t ′-r ′
plane,

and
sketch

in
lines

of
constant

t
and

lines
of

constant
r.

(c)
Show

that
the

radial
coordinate

r
of

the
com

oving
system

is
related

to
the

m
agnitude

of
the

velocity
in

the
inertialsystem

by

r
=

v
/
c

√
1−

v
2/

c
2
.

Suppose
that

a
light

pulse
is

em
itted

at
the

spatial
origin

(r ′
=

0,
t ′

=
a
n
y
th
in

g)
and

is
received

by
another

com
oving

observer
w
ho

is
traveling

at
speed

v.
W

ith
w
hat

redshift
z
is

the
pulse

received?
E
xpress

z
as

a
function

of
r,and

com
pare

your
answ

er
to

part
(d)

of
the

previous
problem

.

(d)
In

this
part

w
e
w
ill

show
that

the
m
etric

of
the

com
oving

coordinate
system

can
be

derived
from

the
m
etric

of
special

relativity,
a
fact

w
hich

com
pletely

establishes
the

consistency
of

the
tw

o
descriptions.

T
o
do

this,
first

w
rite

out
the

equations
of

transform
ation

in
the

form
:

t ′=
?

r ′=
?

θ ′=
?

φ ′=
?
,

w
here

the
question

m
arks

denote
expressions

in
t,

r,
θ,

and
φ.

N
ow

consider
an

infinitesim
al

spacetim
e
line

segm
ent

described
in

the
com

oving
system

by
its

tw
o
endpoints:

(t,r,θ
,φ)

and
(t

+
d
t,r

+
d
r,θ

+
d
θ
,φ

+
d
φ).

C
alculating

to
first

order
in

the
infinitesim

al
quantities,

find
the

separation
betw

een
the

coordinates
of

the
tw

o
endpoints

in
the

inertial
coordinate

system
—

i.e.,
find

d
t ′,

d
r ′,

d
θ ′,

and
d
φ ′.

N
ow

insert
these

expressions
into

the
special

relativity
expression

for
the

invariant
interval

d
s
2S

T
,
and

if
you

have
m
ade

no
m
istakes

you
w
ill

recover
the

R
obertson-W

alker
m
etric

used
in

the
previous

problem
.
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D
IS

C
U

S
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N
O

F
T

H
E

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
IV

E
R

S
E
:

T
he

tw
o
problem

s
above

dem
onstrate

how
the

general
relativistic

description
of

cosm
ology

can
reduce

to
special

relativity
w
hen

gravity
is

unim
portant,

but
it

provides
a
m
isleading

picture
ofthe

big-bang
singularity

w
hich

I
w
ould

like
to

clear
up.

F
irst,

let
m
e
point

out
that

the
m
ass

density
of

the
universe

increases
as

one
looks

backw
ard

in
tim

e.
If

the
m
ass

density
param

eter
Ω
≡

ρ
/
ρ

c
for

our
universe

has
a
value

of0.2,at
the

low
end

ofthe
em

pirically
allow

ed
range,then

the
universe

today
can

be
approxim

ately
m
odeled

by
the

zero
m
ass

density
universe.

H
ow

ever,
provided

that
Ω

is
greater

than
zero

today,the
zero

m
ass

density
m
odel

cannot
be

taken
as

a
valid

m
odel

for
the

early
history

of
the

universe.

In
the

zero
m
ass

density
m
odel,the

big-bang
“singularity”

is
a
single

spacetim
e

point
w
hich

is
in

fact
not

singular
at

all.
In

the
com

oving
description

the
scale

factor
a(t)

equals
zero

at
this

tim
e,but

in
the

inertialsystem
one

sees
that

the
spacetim

e
m
etric

is
really

just
the

usual
sm

ooth
m
etric

of
special

relativity,
expressed

in
a

peculiar
set

of
coordinates.

In
this

m
odel

it
is

unnatural
to

think
of

t
=

0
as

really
defining

the
beginning

of
anything,

since
the

the
future

light-cone
of

the
origin

connects
sm

oothly
to

the
rest

of
the

spacetim
e.

In
the

standard
m
odelofthe

universe
w
ith

a
nonzero

m
ass

density,the
behavior

of
the

singularity
is

very
different.

F
irst

of
all,

it
really

is
singular—

one
can

m
athem

atically
prove

that
there

is
no

coordinate
system

in
w
hich

the
singularity

disappears.
T
hus,the

spacetim
e
cannot

be
joined

sm
oothly

onto
anything

that
m
ay

have
happened

earlier.

T
he

differences
betw

een
the

singularities
in

the
tw

o
m
odels

can
also

be
seen

by
looking

at
the

horizon
distance.

W
e
learned

in
L
ecture

N
otes

4
that

light
can

travel
only

a
finite

distance
from

the
tim

e
of

the
big

bang
to

som
e
arbitrary

tim
e
t,

and
that

this
“horizon

distance”
is

given
by

)
p (t)

=
a(t) ∫

t

0

c

a(t ′)
d
t ′

.

For
the

scale
factor

of
the

zero
m
ass

density
universe

as
found

in
the

problem
,
one

can
see

that
this

distance
is

infinite
for

any
t—

for
the

zero
m
ass

density
m
odel

there
is

n
o
horizon.

For
a
radiation-dom

inated
m
odel,

how
ever,

there
is

a
finite

horizon
distance

given
by

2ct.

F
inally,

in
the

zero
m
ass

density
m
odel

the
big

bang
occurs

at
a
single

point
in

spacetim
e,

but
for

a
nonzero

m
ass

density
m
odel

it
seem

s
better

to
think

of
the

big
bang

as
occurring

everyw
here

at
once.

In
term

s
of

the
R
obertson-W

alker
coordinates,

the
singularity

occurs
at

t
=

0,
for

all
values

of
r,

θ,
and

φ.
T
here

is
a
subtle

issue,
how

ever,
because

w
ith

a(t
=

0)
=

0,
all

of
these

points
have
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zero
distance

from
each

other.
M
athem

atically
the

locus
t
=

0
in

a
nonzero

m
ass

density
m
odelis

too
singular

to
even

be
considered

part
ofthe

space,w
hich

consists
of

all
values

of
t
>

0.
T
hus,

the
question

of
w
hether

the
singularity

is
a
single

point
is

not
w
ell

defined.
For

any
t
>

0
the

issue
is

of
course

clear—
the

space
is

hom
ogeneous

and
infinite

(for
the

case
of

the
open

universe).
If

one
w
ishes

to
ignore

the
m
athem

atical
subtleties

and
call

the
singularity

at
t
=

0
a
single

point,
then

one
certainly

m
ust

rem
em

ber
that

the
singularity

m
akes

it
a
very

unusual
point.

O
b
jects

em
anating

from
this

“point”
can

achieve
an

infinite
separation

in
an

arbitrarily
short

length
of

tim
e.

T
otal

p
oin

ts
for

P
rob

lem
S
et

8:
43,

p
lu

s
u
p

to
15

p
oin

ts
ex

tra
cred

it.


