from its beginning to the time of the GUT phase transition, t_{GUT}.

$$
\frac{\varepsilon(\partial q)}{{ }_{\tau}\left(L^{y}\right)} \frac{0 \varepsilon}{z^{\psi}} \delta=n
$$

blackbody radiation, as described by Eq. (6.48) of Lecture Notes 6,
Assume that the particles of the grand unified theory form a thermal gas of

- әшпрол

 (I'Ld)

$$
\varepsilon^{\Im} / I \sim W u
$$

number density n_{M} of monopoles formed at the phase transition is of order
 is expected to have a mass $M_{M} c^{2} \approx 10^{18} \mathrm{GeV}$, where the subscript " M " stands expectation values, so the monopoles form at the phase transition. Each monopole

 standard model of particle physics. At very high temperatures the Higgs fields os-
 ically stable knots) in the configuration of the Higgs fields that are responsible for

(squ! od 0\%) NGTGOYd 马TOdONON DILGNDVN GHL : I NGTGOYd READING ASSIGNMENT: None DUE DATE: Tuesday, December 10, 2013, at 5:00 pm

se 挑 әұ!̣м II!

$\frac{{ }^{9}{ }_{\varepsilon}{ }^{5} \psi}{\mathrm{~d}} \equiv \mathrm{Jd}$
which we will describe by relating it to a parameter E_{f} by

 әโduụs s.su!̣s uо!̣n

 adopt a simple description of how inflation works. Although we are trying to explain observed homogeneity of the universe. To make the calculation well-defined, we will

 NGTGOYД XLI'GNGЮONOH/NOZ
PROBLEM 4: THE INFLATIONARY SOLUTION TO THE HORI-

 have left their sources after the end of inflation. Photons that left their sources

 for the age of the universe. Then do the integral numerically.

 Problem 3 , you could use instead $3 c t_{0}$, the answer for a flat matter-dominated using the value of $\ell_{p \text {,horizon }}\left(t_{0}\right)$ calculated in Problem 3. (If you did not do $(8.7 \mathrm{~d}) \quad$ ' $\left({ }^{0} 7\right)^{\text {บоz!..оч }{ }^{\prime} d \gamma}<\left(0^{7}\right)^{4}, l$

Problem: Find the minimum value of Z such that the present. For the current entropy density, include photons and neutrinos, taking
into account the temperature difference $T_{\nu} / T_{\gamma}=(4 / 11)^{1 / 3}$.

 but fortunately the value of this highly uncertain number will not have much effect energy scale of reheating. For a grand unified theory one might take $g_{\mathrm{RH}} \approx 300$,

converted to thermal equilibrium radiation, described as in Lecture Notes 6 by then assumed to occur instantly, with the mass density ρ_{f} of the false vacuum being will assume for simplicity that inflation ends suddenly, at time t_{e}. Reheating is by a factor Z, where we will be trying to calculate the minimum value of Z. We

than the Hubble length, so we write

 but must be explained in terms of the evolution of the universe. The homogeneity is (like the 1 part in 10^{5} uniformity of the CMB) was not part of the initial conditions,

