

 tion of α and θ ．
d）（6 points）Find the physical value of the horizon distance，$\ell_{p \text { ，horizon }}$ ，as a func－ your answers to parts（a）and（b）of this question． Notes 4．However，you should show that you get the same answer by combining
 c）（5 points）Find the mass density parameter Ω as a function of α and θ ．As with b）（5 points）Find the mass density ρ as a function of α and θ ．

$(\mathrm{I}-\theta$ YSOo $) ~ o=\frac{4 \mu}{n}$

$(\theta-\theta$ पu！̣ $) ~ ə=\nsupseteq$

 The equations describing the evolution of an open，matter－dominated universe

－słu！̣od 0\＆pazunos
 （squiod ge）面SYG $\Lambda \mathbf{I N} \cap$

Physics 8．286：The Early Universe

ХЮОTONHOAL HO 田L〇LILSNI SLLGSOHOVSSVIN
f! moчs of pәyse qou

 are asked to show half of this statement. Specifically, you should show that as Ω
approaches 1 from below, the expression for $|H| t$ approaches $2 / 3$. In doing this, you It was claimed that this formula is continuous at $\Omega=1$. In this problem you

 Niwde is able to see? What is the lookback time to an object with this blueshift?

 Ω_{0}. He finds, of course, that $H_{0}<0$ (because he is in the contracting phase) and present values of the Hubble expansion rate, H_{0}, and the mass density parameter,
 when $\theta>\pi$), an astronomer named Elbbuh Niwde discovers that nearby galaxies discussed in Ryden's section 6.1. At some time during the contracting phase (i.e., closed universe discussed in Lecture Notes 4, and it is also the "Big Crunch" model Consider a closed universe containing only nonrelativistic matter. This is the some paraphrasing to make it consistent with the language used in lecture.
 (squiod 9\%) 'GSUGAIN〇 G'GLVNINOG

 gives an argument to show that if a space is isotropic about two distinct points,

 SGOVdS
NVGGITOी't NI SLNIOd OML L〇OGV XdOYLOSI :9 N'GTGOYd

