$: 九 p+九$ of $九$
Break the volume up into spherical shells of infinitesimal thickness，extending from

PROBLEM 2：VOLUME OF A CLOSED UNIVERSE（15 points）

 S and ρ are both measurable quantities．Since the space described by this independent of the coordinate system which was used for the calculation，since
（c）（5 points）Express the circumference S in terms of the radius ρ ．This result is

$\stackrel{z^{l}+\mathrm{L} \Lambda}{\underline{2}}$
 $=\sinh ^{-1} r$

pue in Lecture Notes 3，）．You will want the following integrals： （If you don＇t remember why we can take $k= \pm 1$ ，see the section called＂Units＂
 of coordinate length $d r$ ，calculate the length of such a segment，and integrate． $\theta=\pi / 2$ and $\phi=$ constant．Hint：Break the line into infinitesimal segments line which runs from the origin to the circle（ $r=r_{0}$ ），along a trajectory of
（b）（ 5 points）Find the radius ρ of this circle．Note that ρ is the length of a

 Consider a circle described by the equations
 You should be able to work this problem，however，whether or not you have gotten Eq．（5．27）of Lecture Notes 5，evaluated at some particular time t ，with $R \equiv a(t)$ ． to 1 if $k=1$ ，and otherwise from 0 to ∞ ．（This is the Robertson－Walker metric of where $\phi=2 \pi$ and $\phi=0$ are identified．r is a radial coordinate，which runs from 0 and ϕ are angular coordinates with the usual properties： $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$ ， Here R and k are constants，where k will always have one of the values $1,-1$ ，or $0 . \theta$

$$
\left.\frac{d y-I}{z^{l p}}\right\} z_{z} \mathcal{I}={ }_{z} s p
$$

Consider a three－dimensional space described by the following metric：
PROBLEM 1：A CIRCLE IN A NON－EUCLIDEAN GEOMETRY that we are skipping．
 Chapter 10，about Nucleosynthesis and the Early Universe，makes good paral－ We are skipping Chapters $7-9$ of Ryden for now，but we will come back to them． ters 5 and 6，and also Barbara Ryden，Introduction to Cosmology，Chapter 10.

¢ LAS Wataoyd

Prof．Alan Guth

convenient to work with an alternative radial coordinate ψ, related to r by
where I have taken $k=1$. To discuss motion in the radial direction, it is more

The spacetime metric for a homogeneous, isotropic, closed universe is given by

 $R \sin \psi$. Thus the area of the spherical surface is $4 \pi R^{2} \sin ^{2} \psi$. To find the volume,
multiply this area by the thickness of the shell (which you can read off from the the metric for varying θ and ϕ is the same as that for a spherical surface of radius the metric for the surface of a sphere, one can see that as long as ψ is held fixed,

 S! К.ıдәшоә.8 шеәр!!

ұпочұ!мм ' z Ұ!!
energy flux J per solid angle subtended by the galaxy.* Calculate the surface
(c) (5 points) The surface brightness σ of the distant galaxy is defined to be the

 w. Find the apparent angular size $\Delta \theta$ (measured from one edge to the other)
of the galaxy as it would be observed from Earth today.
(b) (10 points) Suppose that the physical diameter of the galaxy at time t_{G} was

 photons. What is the radiation energy flux J from this galaxy at the Earth joule/sec). The power was radiated uniformly in all directions, in the form of

 (a) (10 points) Suppose that the Earth is at the center of these coordinates, and your answers as far as it is possible without knowing the function $a(t)$. problem you should consider $a(t)$ to be an arbitrary function. You should simplify

8.286 PROBLEM SET 5, FALL 2013

 \cong
 terms of $\psi_{G}, t_{G}, t_{0}, z_{G}$, or the function $a(t)$.)

 (c) (5 points) To estimate the number of galaxies that one expects to see in a given

\qquad not try.)

 galaxy G, located at $\psi=\psi_{G}$. Write down an equation which determines the $(\psi=0)$, and that at the present time, t_{0}, we receive a light pulse from a distant (e)

әЧ7 os
иәЧL
related to r by is convenient to introduce an alternative radial coordinate ψ, which in this case is

 UNIVERSE (30 points) PROBLEM 4: TRAJECTORIES AND DISTANCES IN AN OPEN
8.286 PROBLEM SET 5, FALL 2013

(f) (5 points) A third common definition of distance is called luminosity dis-

$\frac{\theta \nabla}{m} \equiv{ }^{\text {sue }} \gamma$

$$
\begin{aligned}
& \text { Motivated by this relation, cosmologists define the angular size distance } \ell_{\text {ang }} \\
& \text { of an object by }
\end{aligned}
$$

subtend an angle $\Delta \theta=w / \ell$: In a static, Euclidean space, a small sphere of diameter w at a distance ℓ will determined by measuring the apparent size of an object of known physical size. e) (5 points) Another common definition of distance is angular size distance, expression for the proper distance $\ell_{\text {prop }}$ of galaxy G.

 a network of rulers that are laid end to end from here to the distant galaxy.
 $x^{2}+y^{2}<1$,

distance relation

Cosmologists therefore define the luminosity distance by

