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T
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8.286:
T
he

E
arly

U
niverse

O
ctober

27,
2013

P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

6

D
U

E
D

A
T

E
:
M
onday,

N
ovem

ber
4,

2013

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:Steven

W
einberg,

T
h
e

F
irst

T
h
ree

M
in

u
tes,C

hap-
ter

7
(T

he
F
irstO

ne-H
undredth

Second),and
also

B
arbara

R
yden,

In
tro

d
u
ctio

n
to

C
o
sm

o
lo

g
y,C

hapter
8
(D

ark
M
atter).

U
P

C
O

M
IN

G
Q

U
IZ

:
T
hursday,

N
ovem

ber
7,2013.

P
R

O
B

L
E
M

1:
G

E
O

D
E
S
IC

S
IN

A
F
L
A

T
U

N
IV

E
R

S
E

(25
points)

A
ccording

to
general

relativity,
in

the
absence

of
any

non-gravitational
forces

a
particle

w
ill

travel
along

a
spacetim

e
geodesic.

In
this

sense,
gravity

is
reduced

to
a
distortion

in
spacetim

e.

C
onsider

the
case

of
a
flat

(i.e.,
k
=

0)
R
obertson–W

alker
m
etric,

w
hich

has
the

sim
ple

form
d
s
2
=

−
c
2d
t
2
+
a
2(t) [d

x
2
+
d
y
2
+
d
z
2 ]

.

Since
the

spatialm
etric

is
flat,w

e
have

the
option

ofw
riting

it
in

term
s
ofC

artesian
rather

than
polar

coordinates.
N
ow

consider
a
particle

w
hich

m
oves

along
the

x-
axis.

(N
ote

that
the

galaxies
are

on
the

average
at

rest
in

this
system

,but
one

can
stilldiscuss

the
trajectory

of
a
particle

w
hich

m
oves

through
the

m
odel

universe.)

(a)
(8

points)
U
se

the
geodesic

equation
to

show
that

the
coordinate

velocity
com

-
puted

w
ith

respect
to

proper
tim

e
(i.e.,

d
x
/
d
τ)

falls
off

as
1
/
a
2(t).

(b)
(8

points)
U
se

the
expression

for
the

spacetim
e
m
etric

to
relate

d
x
/
d
t
to

d
x
/
d
τ.

(c)
(9

points)
T
he

physical
velocity

of
the

particle
relative

to
the

galaxies
that

it
is

passing
is

given
by

v
=
a(t)

d
xd
t

.

Show
that

the
m
om

entum
of

the
particle,defined

relativistically
by

p
=

m
v

√
1−

v
2/
c
2

falls
off

as
1
/
a(t).

(T
his

im
plies,by

the
w
ay,that

ifthe
particle

w
ere

described
as

a
quantum

m
echanicalw

ave
w
ith

w
avelength

λ
=
h
/|�p|,then

its
w
avelength

w
ould

stretch
w
ith

the
expansion

of
the

universe,
in

the
sam

e
w
ay

that
the

w
avelength

of
light

is
redshifted.)
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2:
M

E
T

R
IC

O
F

A
S
T
A

T
IC

G
R

A
V

IT
A

T
IO

N
A

L
F
IE

L
D

(25
points)

In
this

problem
w
e
w
ill

consider
the

m
etric

d
s
2
=

− [c
2
+

2
φ(�x) ]

d
t
2
+

3
∑i=

1 (d
x

i )
2

,

w
hich

describes
a
static

gravitational
field.

H
ere

i
runs

from
1
to

3,
w
ith

the
identifications

x
1≡

x,
x

2≡
y,

and
x

3≡
z.

T
he

function
φ(�x)

depends
only

on
the

spatial
variables

�x≡
(x

1,x
2,x

3),and
not

on
the

tim
e
coordinate

t.

(a)
(5

points)
Suppose

that
a
radio

transm
itter,

located
at

�x
e ,

em
its

a
series

of
evenly

spaced
pulses.

T
he

pulses
are

separated
by

a
proper

tim
e
interval∆

T
e ,

as
m
easured

by
a
clock

at
the

sam
e
location.

W
hat

is
the

coordinate
tim

e
inter-

val∆
t
e
betw

een
the

em
ission

ofthe
pulses?

(I.e.,∆
t
e
is
the

difference
betw

een
the

tim
e
coordinate

t
at

the
em

ission
ofone

pulse
and

the
tim

e
coordinate

t
at

the
em

ission
of

the
next

pulse.)

(b)
(5

points)
T
he

pulses
are

received
by

an
observer

at
�x

r ,w
ho

m
easures

the
tim

e
of

arrival
of

each
pulse.

W
hat

is
the

c
o
o
rd

in
a
te

tim
e
interval

∆
t
r
betw

een
the

reception
of

successive
pulses?

(c)
(5

points)
T
he

observer
uses

his
ow

n
clocks

to
m
easure

the
proper

tim
e
interval

∆
T

r
betw

een
the

reception
of

successive
pulses.

F
ind

this
tim

e
interval,

and
also

the
redshift

z,
defined

by

1
+
z
=

∆
T

r

∆
T

e
.

F
irst

com
pute

an
exact

expression
for

z,and
then

expand
the

answ
er

to
low

est
order

in
φ(�x)

to
obtain

a
w
eak-field

approxim
ation.

(T
his

w
eak-field

approxi-
m
ation

is
in

fact
highly

accurate
in

allterrestrialand
solar

system
applications.)

(d)
(5

points)
A

freely
falling

particle
travels

on
a
spacetim

e
geodesic

x
µ(τ),w

here
τ
is

the
proper

tim
e.

(I.e.,
τ
is

the
tim

e
that

w
ould

be
m
easured

by
a
clock

m
oving

w
ith

the
particle.)

T
he

trajectory
is
described

by
the

geodesic
equation

dd
τ (

g
µ

ν
d
x

ν

d
τ )

=
12
(∂

µ
g

λ
σ )

d
x

λ

d
τ

d
x

σ

d
τ

,

w
here

the
G
reek

indices
(µ
,ν
,λ
,σ

,etc.)
run

from
0
to

3,and
are

sum
m
ed

over
w
hen

repeated.
C
alculate

an
explicit

expression
for

d
2x

i

d
τ

2
,
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valid
for

i
=

1
,2
,
or

3.
(It

is
acceptable

to
leave

quantities
such

as
d
t/
d
τ
or

d
x

i/
d
τ
in

the
answ

er.)

(e)
(5

points)
In

the
w
eak-field

nonrelativistic-velocity
approxim

ation,the
answ

er
to

the
previous

part
reduces

to

d
2x

i

d
t
2

=
−
∂

i φ
,

so
φ(�x)

can
be

identified
as

the
N
ew

tonian
gravitational

potential.
U
se

this
fact

to
estim

ate
the

gravitational
redshift

z
of

a
photon

that
rises

from
the

floor
of

this
room

to
the

ceiling
(say

4
m
eters).

(O
ne

significant
figure

w
ill

be
suffi

cient.)

P
R

O
B

L
E
M

3:
C

IR
C

U
L
A

R
O

R
B

IT
S

IN
A

S
C

H
W

A
R

Z
S
C

H
IL

D
M

E
T

-
R

IC
(30

points)

R
E
A

D
T

H
IS

:
T
his

problem
w
as

P
roblem

16
of

R
eview

P
roblem

s
for

Q
uiz

2
of

2011,
and

the
solution

is
posted

as
http://w

eb.m
it.edu/8.286/w

w
w
/quiz11/ecqr2-

1.pdf.
L
ike

P
roblem

4
of

P
roblem

Set
3,

but
unlike

allother
hom

ew
ork

problem
s
so

far,
in

this
case

you
are

encouraged
to

look
at

the
solutions

and
benefit

from
them

.
W

hen
you

w
rite

your
solution,

you
can

even
copy

it
verbatim

from
these

solutions
if

you
w
ish,

although
obviously

you
w
ill

learn
m
ore

if
you

think
about

the
solution

and
w
rite

your
ow

n
version.

T
he

Schw
arzschild

m
etric,

w
hich

describes
the

external
gravitational

field
of

any
spherically

sym
m
etric

distribution
of

m
ass,

is
given

by

d
s
2
=

−
c
2d
τ

2
=

− (
1−

2
G
M

rc
2 )

c
2d
t
2+ (

1−
2
G
M

rc
2 )

−
1

d
r
2+

r
2d
θ
2+

r
2
sin

2
θ
d
φ

2
,

w
here

M
is

the
total

m
ass

of
the

ob
ject,

0
≤

θ
≤

π
,
0

≤
φ
<

2
π
,
and

φ
=

2
π

is
identified

w
ith

φ
=

0.
W
e
w
ill

be
concerned

only
w
ith

m
otion

outside
the

Schw
arzschild

horizon
R

S
=

2
G
M
/
c
2,

so
w
e
can

take
r
>

R
S .

(T
his

restriction
allow

s
us

to
avoid

the
com

plications
of

understanding
the

effects
of

the
singularity

at
r
=

R
S .)

In
this

problem
w
e
w
ill

use
the

geodesic
equation

to
calculate

the
behavior

of
circular

orbits
in

this
m
etric.

W
e
w
ill

assum
e
a
perfectly

circular
orbit

in
the

x-y
plane:

the
radial

coordinate
r
is

fixed,
θ
=

90 ◦,
and

φ
=

ω
t,

for
som

e
angular

velocity
ω
.

(a)
(7

points)
U
se

the
m
etric

to
find

the
proper

tim
e
interval

d
τ
for

a
segm

ent
ofthe

path
corresponding

to
a
coordinate

tim
e
interval

d
t.

N
ote

that
d
τ
represents

the
tim

e
that

w
ould

actually
be

m
easured

by
a
clock

m
oving

w
ith

the
orbiting

body.
Y
our

result
should

show
that

d
τd
t
= √

1−
2
G
M

rc
2

−
r
2ω

2

c
2

.
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N
ote

that
for

M
=

0
this

reduces
to

the
special

relativistic
relation

d
τ
/
d
t
=

√
1−

v
2/
c
2,

but
the

extra
term

proportional
to

M
describes

an
effect

that
is

new
w
ith

generalrelativity—
the

gravitationalfield
causes

clocks
to

slow
dow

n,
just

as
m
otion

does.

(b)
(7

points)
Show

that
the

geodesic
equation

of
m
otion

(E
q.

(5.65))
for

one
of

the
coordinates

takes
the

form

0
=

12
∂
g

φ
φ

∂
r

(
d
φ

d
τ )

2

+
12
∂
g

tt

∂
r (

d
t

d
τ )

2

.

(c)
(8

points)
Show

that
the

above
equation

im
plies

r (
d
φ

d
τ )

2

=
G
Mr
2

(
d
t

d
τ )

2

,

w
hich

in
turn

im
plies

that

rω
2
=

G
Mr
2

.

T
hus,

the
relation

betw
een

r
and

ω
is

exactly
the

sam
e
as

in
N
ew

tonian
m
e-

chanics.
[N

ote,
how

ever,
that

this
does

not
really

m
ean

that
general

relativity
has

no
eff

ect.
F
irst,

ω
has

been
defined

by
d
φ
/
d
t,

w
here

t
is

a
tim

e
coordi-

nate
w
hich

is
not

the
sam

e
as

the
proper

tim
e
τ

that
w
ould

be
m
easured

by
a

clock
on

the
orbiting

body.
Second,

r
does

not
really

have
the

sam
e
m
eaning

as
in

the
N
ew

tonian
calculation,

since
it

is
not

the
m
easured

distance
from

the
center

of
m
otion.

M
easured

distances,
you

w
ill

recall,
are

calculated
by

inte-
grating

the
m
etric,

as
for

exam
ple

in
P
roblem

1
of

P
roblem

Set
5,

A
C
ircle

in
a
N
on-E

uclidean
G
eom

etry.
Since

the
angular

(d
θ
2
and

d
φ

2)
term

s
in

the
Schw

arzschild
m
etric

are
unaff

ected
by

the
m
ass,

how
ever,

it
can

be
seen

that
the

circum
ference

ofthe
circle

is
equalto

2
π
r,as

in
the

N
ew

tonian
calculation.]

(d)
(8

points)
Show

that
circular

orbits
around

a
black

hole
have

a
m
inim

um
value

of
the

radial
coordinate

r,
w
hich

is
larger

than
R

S .
W

hat
is

it?

P
R

O
B

L
E
M

4:
G

A
S

P
R

E
S
S
U

R
E

A
N

D
E
N

E
R

G
Y

C
O

N
S
E
R
V
A

T
IO

N
(25

points)

In
this

problem
w
e
w
ill

pursue
the

im
plications

of
the

conservation
of

energy.
C
onsider

first
a
gas

contained
in

a
cham

ber
w
ith

a
m
ovable

piston,as
show

n
below

:
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L
et

U
denote

the
total

energy
of

the
gas,

and
let

p
denote

the
pressure.

Suppose
that

the
piston

is
m
oved

a
distance

d
x
to

the
right.

(W
e
suppose

that
the

m
otion

is
slow

,
so

that
the

gas
particles

have
tim

e
to

respond
and

to
m
aintain

a
uniform

pressure
throughout

the
volum

e.)
T
he

gas
exerts

a
force

p
A

on
the

piston,
so

the
gas

does
w
ork

d
W

=
p
A
d
x
as

the
piston

is
m
oved.

N
ote

that
the

volum
e
increases

by
an

am
ount

d
V

=
A
d
x,

so
d
W

=
p
d
V
.
T
he

energy
of

the
gas

decreases
by

this
am

ount,
so

d
U

=
−
p
d
V

.
(P

4.1)

It
turns

out
that

this
relation

is
valid

w
henever

the
volum

e
of

a
gas

is
changed,

regardless
of

the
shape

of
the

volum
e.

N
ow

consider
a
hom

ogeneous,
isotropic,

expanding
universe,

described
by

a
scale

factor
a(t).

L
et
u
denote

the
energy

density
ofthe

gas
that

fills
it.

(R
em

em
ber

that
u

=
ρ
c
2,

w
here

ρ
is

the
m
ass

density
of

the
gas.)

W
e
w
ill

consider
a
fixed

coordinate
volum

e
V

c
o
o
r
d ,

so
the

physical
volum

e
w
illvary

as

V
p
h
y
s (t)

=
a
3(t)V

c
o
o
rd
.

(P
4.2)

T
he

energy
of

the
gas

in
this

region
is

then
given

by

U
=
V

p
h
y
s u

.
(P

4.3)

(a)
(9

points)
U
sing

these
relations,show

that

dd
t (a

3ρ
c
2 )

=
−
p
dd
t (a

3)
,

(P
4.4)

and
then

that
ρ̇
=

−
3
ȧa (

ρ
+

pc
2 )

,
(P

4.5)

w
here

the
dot

denotes
differentiation

w
ith

respect
to

t.

(b)
(8

points)
T
he

scale
factor

evolves
according

to
the

relation
(
ȧa )

2

=
8
π3
G
ρ−

k
c
2

a
2
.

(P
4.6)

U
sing

E
qs.

(P
4.5)

and
(P

4.6),show
that

ä
=

−
4
π3
G (

ρ
+

3
pc
2 )

a
.

(P
4.7)

T
his

equation
describes

directly
the

deceleration
ofthe

cosm
ic
expansion.

N
ote

that
there

are
contributions

from
the

m
ass

density
ρ,but

also
from

the
pressure

p.

(c)
(8

points)
So

far
our

equations
have

been
valid

for
any

sort
of

a
gas,but

let
us

now
specialize

to
the

case
of

black-body
radiation.

For
this

case
w
e
know

that
ρ
=
bT

4,w
here

b
is
a
constant

and
T

is
the

tem
perature.

W
e
also

know
that

as
the

universe
expands,

a
T

rem
ains

constant.
U
sing

these
facts

and
E
q.

(P
4.5),

find
an

expression
for

p
in

term
s
of
ρ.
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P
R

O
B

L
E
M

5:
T

H
E

E
F
F
E
C

T
O

F
P

R
E
S
S
U

R
E

O
N

C
O

S
M

O
L
O

G
IC

A
L

E
V

O
L
U

T
IO

N
(25

points)

A
radiation-dom

inated
universe

behaves
differently

from
a
m
atter-dom

inated
universe

because
the

pressure
of

the
radiation

is
significant.

In
this

problem
w
e

explore
the

role
of

pressure
for

several
fictitious

form
s
of

m
atter.

(a)
(8

points)
For

the
first

fictitious
form

of
m
atter,

the
m
ass

density
ρ
decreases

as
the

scale
factor

a(t)
grow

s,
w
ith

the
relation

ρ(t)∝
1

a
6(t)

.

W
hat

is
the

pressure
of

this
form

of
m
atter?

[H
int:

the
answ

er
is

proportional
to

the
m
ass

density.]

(b)
(9

points)
F
ind

the
behavior

ofthe
scale

factor
a(t)

for
a
flat

universe
dom

inated
by

the
form

of
m
atter

described
in

part
(a).

Y
ou

should
be

able
to

determ
ine

the
function

a(t)
up

to
a
constant

factor.

(c)
(8

points)
N
ow

consider
a
universe

dom
inated

by
a
different

form
of

fictitious
m
atter,

w
ith

a
pressure

given
by

p
=

12
ρ
c
2
.

A
s
the

universe
expands,

the
m
ass

density
of

this
form

of
m
atter

behaves
as

ρ(t)∝
1

a
n(t)

.

F
ind

the
pow

er
n.

P
R

O
B

L
E
M

6:
T

IM
E

E
V

O
L
U

T
IO

N
O

F
A

U
N

IV
E
R

S
E

W
IT

H
M

Y
S
T

E
-

R
IO

U
S

S
T

U
F
F

(15
points)

Suppose
that

a
m
odeluniverse

is
filled

w
ith

a
peculiar

form
ofm

atter
for

w
hich

ρ∝
1

a
5(t)

.

A
ssum

ing
that

the
m
odel

universe
is

flat,
calculate

(a)
(4

points)
T
he

behavior
of

the
scale

factor,
a(t).

Y
ou

should
be

able
to

find
a(t)

up
to

an
arbitrary

constant
of

proportionality.

(b)
(3

points)
T
he

value
of

the
H
ubble

param
eter

H
(t),

as
a
function

of
t.

(c)
(4

points)
T
he

physical
horizon

distance,
.
p
,h

o
riz

o
n (t).

(d)
(4

points)
T
he

m
ass

density
ρ(t).
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7:
E
F
F
E
C

T
O

F
A

N
E
X

T
R

A
N

E
U

T
R

IN
O

S
P

E
C

IE
S

(15
points)

A
ccording

to
the

standard
assum

ptions
(w

hich
w
ere

used
in

the
lecture

notes),
there

are
three

species
of

effectively
m
assless

neutrinos.
In

the
tem

perature
range

of
1
M
eV

<
k
T
<

100
M
eV

,
the

m
ass

density
of

the
universe

is
believed

to
have

been
dom

inated
by

the
black-body

radiation
of

photons,
electron-positron

pairs,
and

these
neutrinos,

allof
w
hich

w
ere

in
therm

al
equilibrium

.

(a)
(5

points)
U
nder

these
assum

ptions,
how

long
did

it
take

(starting
from

the
instant

of
the

big
bang)

for
the

tem
perature

to
fall

to
the

value
such

that
k
T

=
1
M
eV

?

(b)
(5

points)
H
ow

m
uch

tim
e
w
ould

it
have

taken
if
there

w
ere

one
other

species
ofm

assless
neutrino,in

addition
to

the
three

w
hich

w
e
are

currently
assum

ing?

(c)
(5

points)
W

hat
w
ould

be
the

m
ass

density
of

the
universe

w
hen

k
T
=

1
M
eV

under
the

standard
assum

ptions,
and

w
hat

w
ould

it
be

if
there

w
ere

one
other

species
of

m
assless

neutrino?

T
otal

p
oin

ts
for

P
rob

lem
S
et

6:
160.


