

$\underline{\underline{z^{3} / z^{n}-\mathrm{I}} /}=d$
 au

$$
\frac{p p}{x p}(\eta){ }^{x}=a
$$ is passing is given by

c puted with respect to proper time（i．e．，$d x / d \tau$ ）falls off as $1 / a^{2}(t)$ ．

 Since the spatial metric is flat，we have the option of writing it in terms of Cartesian
rather than polar coordinates．Now consider a particle which moves along the x－

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d x^{2}+d y^{2}+d z^{2}\right]
$$

the simple form
 to a distortion in spacetime．

 PROBLEM 1：GEODESICS IN A FLAT UNIVERSE（25 points） UPCOMING QUIZ：Thursday，November 7， 2013.

9 L＇AS N＇GTGOYd

Prof．Alan Guth

ХゆOTONHOGL HO GLOLILSNI SLLASSOHOVSSVN
$\frac{z^{\perp}{ }^{\perp p}}{x_{z} p}$
moving with the particle．）The trajectory is described by the geodesic equation

$$
\frac{d}{d \tau}\left(g_{\mu \nu} \frac{d x^{\nu}}{d \tau}\right)=\frac{1}{2}\left(\partial_{\mu} g_{\lambda \sigma}\right) \frac{d x^{\lambda}}{d \tau} \frac{d x^{\sigma}}{d \tau},
$$

where the Greek indices（ $\mu, \nu, \lambda, \sigma$ ，etc．）run from 0 to 3 ，and are summed over
when repeated．Calculate an explicit expression for

 order in $\phi(\vec{x})$ to obtain a weak－field approximation．（This weak－field approxi－ First compute an exact expression for z ，and then expand the answer to lowest $\frac{{ }^{2} L \nabla}{{ }^{l} L \nabla}$
$\frac{L \nabla}{{ }^{u} L \nabla}=z+\mathrm{I}$ also the redshift z ，defined by
（b）（5 points）The pulses are received by an observer at \vec{x}_{r} ，who measures the time
of arrival of each pulse．What is the coordinate time interval Δt_{r} between
the reception of successive pulses？
（c）（5 points）The observer uses his own clocks to measure the proper time interval
ΔT_{r} between the reception of successive pulses．Find this time interval，and （ \cdot əs［nd ұхәи әчұ јо шо！̣ss！̣шә әчł

 as measured by a clock at the same location．What is the coordinate time inter－ evenly spaced pulses．The pulses are separated by a proper time interval ΔT_{e} ，
 spatial variables $\vec{x} \equiv\left(x^{1}, x^{2}, x^{3}\right)$ ，and not on the time coordinate t ．

In this problem we will consider the metric （squiod
）GTHIA TVNOILVLIAVYゆ DILVLS V HO DI甘LGN ：Z N＇HTGOU丈
\＆L0z TTVA＇9 L马S NATGOYd 987•8
 body. Your result should show that the time that would actually be measured by a clock moving with the orbiting

 angular velocity ω.

 Кұ!!eг

 -uors.ıa umo ınof afuın pun

 far, in this case you are encouraged to look at the solutions and benefit from them.
 2011, and the solution is posted as http://web.mit.edu/8.286/www/quiz11/ecqr2READ THIS: This problem was Problem 16 of Review Problems for Quiz 2 of RIC (30 points)

PROBLEM 3: CIRCULAR ORBITS IN A SCHWARZSCHILD MET-

 of the radial coordinate r, which is larger than R_{S}. What is it? (d) (8 points) Show that circular orbits around a black hole have a minimum value

 grating the metric, as for example in Problem 1 of Problem Set 5, A Circle

 nate which is not the same as the proper time τ that would be measured by a has no effect. First, ω has been defined by $d \phi / d t$, where t is a time coordichanics. [Note, however, that this does not really mean that general relativity
 $r \omega^{2}=\frac{G M}{r^{2}}$

GM

$\left(\frac{\Delta p}{\not p p}\right) \frac{z^{\iota}}{W D}={ }_{z}\left(\frac{\Delta p}{\phi p}\right) \iota$

(c) (8 points) Show that the above equation implies $0=\frac{1}{2} \frac{\partial g_{\phi \phi}}{\partial r}\left(\frac{d \phi}{d \tau}\right)^{2}+\frac{1}{2} \frac{\partial g_{t t}}{\partial r}\left(\frac{d \iota}{d \tau}\right)$
 -səop uoṭou se qsn!

8.286 PROBLEM SET 6, FALL 2013

8.286 PROBLEM SET 6, FALL 2013
PROBLEM 7: EFFECT OF AN EXTRA NEUTRINO SPECIES (15
points)
According to the standard assumptions (which were used in the lecture notes),
there are three species of effectively massless neutrinos. In the temperature range
of $1 \mathrm{MeV}<k T<100 \mathrm{MeV}$, the mass density of the universe is believed to have
been dominated by the black-body radiation of photons, electron-positron pairs,
and these neutrinos, all of which were in thermal equilibrium.
(a) (5 points) Under these assumptions, how long did it take (starting from the
instant of the big bang) for the temperature to fall to the value such that
$k T=1 \mathrm{MeV}$?
(b) (5 points) How much time would it have taken if there were one other species
of massless neutrino, in addition to the three which we are currently assuming?
(c) (5 points) What would be the mass density of the universe when $k T=1 \mathrm{MeV}$
under the standard assumptions, and what would it be if there were one other
species of massless neutrino?

