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T
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E
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U
niverse

N
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12,
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P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

7

D
U

E
D

A
T

E
:
Friday,N

ovem
ber

15,2013

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:Steven

W
einberg,

T
h
e

F
irst

T
h
ree

M
in

u
tes,C

hap-
ter

8
(E

pilogue:
T
he

P
rospect

A
head),

and
A

fterw
ord:

C
osm

ology
Since

1977.
T
here

is
no

reading
assignm

ent
from

R
yden

this
w
eek,

but
if
you

w
ould

like
to

read
ahead,

you
w
ill

be
asked

to
read

C
hapter

9
(T

he
C
osm

ic
M

icrow
ave

B
ackground)

and
C
hapter

11
(Inflation

and
the

V
ery

E
arly

U
niverse)

before
the

end
of

the
sem

ester.

U
P

C
O

M
IN

G
Q

U
IZ

:
T
hursday,

D
ecem

ber
5,2013.

P
R

O
B

L
E
M

1:
E
N

T
R

O
P

Y
A

N
D

T
H

E
B

A
C

K
G

R
O

U
N

D
N

E
U

T
R

IN
O

T
E
M

P
E
R

A
T

U
R

E
(15

points)

T
he

form
ula

for
the

entropy
density

ofblack-body
radiation

is
given

in
L
ecture

N
otes

6.
T
he

derivation
of

this
form

ula
has

been
left

to
the

statistical
m
echanics

course
that

you
either

have
taken

or
hopefully

w
ill

take.
For

our
purposes,

the
im

portant
point

is
that

the
early

universe
rem

ains
very

close
to

therm
alequilibrium

,
and

therefore
entropy

is
conserved.

T
he

conservation
ofentropy

applies
even

during
periods

w
hen

particles,
such

as
electron-positron

pairs,
are

“freezing
out”

of
the

therm
alequilibrium

m
ix.

Since
totalentropy

is
conserved,the

entropy
density

falls
off

as
1
/
a
3(t).

W
hen

the
electron-positron

pairs
disappear

from
the

therm
alequilibrium

m
ix-

ture
as

k
T
falls

below
m

e c
2
=

0
.511

M
eV

,the
w
eak

interactions
have

such
low

cross
sections

that
the

neutrinos
have

essentially
decoupled.

T
o
a
good

approxim
ation,all

of
the

energy
and

entropy
released

by
the

annihilation
of

electrons
and

positrons
is

added
to

the
photon

gas,and
the

neutrinos
are

unaffected.
U
se

these
facts

to
show

that
as

electron-positron
pair

annihilation
takes

place,
a
T

γ
increases

by
a
factor

of
(11

/4)
1
/
3,

w
hile

a
T

ν
rem

ains
constant.

It
follow

s
that

after
the

disappearance
of

the
electron-positron

pairs,
T

ν /
T

γ
=

(4
/11)

1
/
3.

A
s
far

as
w
e
know

,
nothing

hap-
pens

that
significantly

effects
this

ratio
right

up
to

the
present

day.
So

w
e
expect

today
a
background

of
therm

al
neutrinos

w
hich

are
slightly

colder
than

the
2.7 ◦K

background
of

photons.
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P
R

O
B

L
E
M

2:
F
R

E
E
Z
E
-O

U
T

O
F

M
U

O
N

S
(25

points)

A
particle

called
the

m
uon

seem
s
to

be
essentially

identical
to

the
electron,

except
that

it
is

heavier—
the

m
ass/energy

of
a
m
uon

is
106

M
eV

,
com

pared
to

0.511
M
eV

for
the

electron.
T
he

m
uon

(µ −
)
has

the
sam

e
charge

as
an

electron,
denoted

by
−

e.
T
here

is
also

an
antim

uon
(µ

+
),

analogous
to

the
positron,

w
ith

charge
+

e.
T
he

m
uon

and
antim

uon
have

the
sam

e
spin

as
the

electron.
T
here

is
no

know
n
particle

w
ith

a
m
ass

betw
een

that
of

an
electron

and
that

of
a
m
uon.

(a)
T
he

form
ula

for
the

energy
density

of
black-body

radiation,
as

given
by

E
q.

(6.48)
of

the
lecture

notes,u
=

g
π

2

30
(k

T
)
4

(h̄
c)

3
,

is
w
ritten

in
term

s
of

a
norm

alization
constant

g.
W

hat
is

the
value

of
g
for

the
m
uons,

taking
µ

+
and

µ −
together?

(b)
W

hen
k
T

is
just

above
106

M
eV

as
the

universe
cools,

w
hat

particles
besides

the
m
uons

are
contained

in
the

therm
alradiation

that
fills

the
universe?

W
hat

is
the

contribution
to

g
from

each
of

these
particles?

(c)
A
s

k
T

falls
below

106
M
eV

,the
m
uons

disappear
from

the
therm

alequilibrium
radiation.

A
t
these

tem
peratures

all
of

the
other

particles
in

the
black-body

radiation
are

interacting
fast

enough
to

m
aintain

equilibrium
,so

the
heat

given
off

from
the

m
uons

is
shared

am
ong

allthe
other

particles.
L
etting

a
denote

the
R
obertson-W

alker
scale

factor,
by

w
hat

factor
does

the
quantity

a
T

increase
w
hen

the
m
uons

disappear?

P
R

O
B

L
E
M

3:
T

H
E

R
E
D

S
H

IF
T

O
F

T
H

E
C

O
S
M

IC
M

IC
R

O
W

A
V

E
B

A
C

K
G

R
O

U
N

D
(25

points)

It
w
as

m
entioned

in
L
ecture

N
otes

6
that

the
black-body

spectrum
has

the
peculiar

feature
that

it
m
aintains

its
form

under
uniform

redshift.
T
hat

is,
as

the
universe

expands,
even

if
the

photons
do

not
interact

w
ith

anything,
they

w
ill

continue
to

be
described

by
a
black-body

spectrum
,
although

at
a
tem

perature
that

decreases
as

the
universe

expands.
T
hus,

even
though

the
cosm

ic
m
icrow

ave
background

(C
M
B
)
has

not
been

interacting
significantly

w
ith

m
atter

since
350,000

years
after

the
big

bang,the
radiation

today
stillhas

a
black-body

spectrum
.
In

this
problem

w
e
w
ill

dem
onstrate

this
im

portant
property

of
the

black-body
spectrum

.

T
he

spectralenergy
density

ρ
ν (ν

,T
)
for

the
therm

al(black-body)
radiation

of
photons

at
tem

perature
T

w
as

stated
in

L
ecture

N
otes

6
as

E
q.

(6.71),
w
hich

w
e

can
rew

rite
as

ρ
ν (ν

,T
)
=

16
π

2h̄
ν

3

c
3

1
e
h

ν
/
k
T−

1
,

(P
3.1)
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w
here

h
=

2
π
h̄

is
P
lanck’s

original
constant.

ρ
ν (ν

,T
)
d
ν
is

the
energy

per
unit

volum
e
carried

by
photons

w
hose

frequency
is

in
the

interval
[ν

,ν
+

d
ν].

In
this

problem
w
e
w
ill

assum
e
that

this
form

ula
holds

at
som

e
initial

tim
e

t
1 ,

w
hen

the
tem

perature
had

som
e
value

T
1 .

W
e
w
illlet

ρ̃(ν
,t)

denote
the

spectraldistribution
for

photons
in

the
universe,

w
hich

is
a
function

of
frequency

ν
and

tim
e

t.
T
hus,

our
assum

ption
about

the
initialcondition

can
be

expressed
as

ρ̃(ν
,t

1 )
=

ρ
ν (ν

,T
1 )

.
(P

3.2)

T
he

photons
redshift

as
the

universe
expands,

and
to

a
good

approxim
ation

the
redshift

and
the

dilution
of

photons
due

to
the

expansion
are

the
only

physical
effects

that
cause

the
distribution

of
photons

to
evolve.

T
hus,

using
our

know
ledge

ofthe
redshift,w

e
can

calculate
the

spectraldistribution
ρ̃(ν

,t
2 )

at
som

e
later

tim
e

t
2

>
t
1 .

It
is
not

obvious
that

ρ̃(ν
,t

2 )
w
illbe

a
therm

aldistribution,but
in

fact
w
e

w
illbe

able
to

show
that

ρ̃(ν
,t

2 )
=

ρ (ν
,T

(t
2 ) )

,
(P

3.3)

w
here

in
fact

T
(t

2 )
w
illagree

w
ith

w
hat

w
e
already

know
about

the
evolution

of
T

in
a
radiation-dom

inated
universe:

T
(t

2 )
=

a(t
1 )

a(t
2 )

T
1

.
(P

3.4)

T
o
follow

the
evolution

of
the

photons
from

tim
e

t
1
to

tim
e

t
2 ,w

e
can

im
agine

selecting
a
region

of
com

oving
coordinates

w
ith

coordinate
volum

e
V

c .
W

ithin
this

com
oving

volum
e,w

e
can

im
agine

tagging
allthe

photons
in

a
specified

infinitesim
al

range
of

frequencies,
those

betw
een

ν
1
and

ν
1
+

d
ν
1 .

R
ecalling

that
the

energy
of

each
such

photon
is

h
ν,

the
num

ber
d
N

1
of

tagged
photons

is
then

d
N

1
=

ρ̃(ν
1 ,t

1 )
a
3(t

1 )
V

c
d
ν
1

h
ν
1

.
(P

3.5)

(a)
W
e
now

w
ish

to
follow

the
photons

in
this

frequency
range

from
tim

e
t
1
to

tim
e

t
2 ,

during
w
hich

tim
e
each

photon
redshifts.

A
t
the

latter
tim

e
w
e
can

denote
the

range
of

frequencies
by

ν
2
to

ν
2
+

d
ν
2 .

E
xpress

ν
2
and

d
ν
2
in

term
s
of

ν
1

and
d
ν
1 ,

assum
ing

that
the

scale
factor

a(t)
is

given.

(b)
A
t
tim

e
t
2
w
e
can

im
agine

tagging
allthe

photons
in

the
frequency

range
ν
2
to

ν
2 +

d
ν
2
that

are
found

in
the

originalcom
oving

region
w
ith

coordinate
volum

e
V

c .
E
xplain

w
hy

the
num

ber
d
N

2
of

such
photons,

on
average,

w
ill

equal
d
N

1

as
calculated

in
E
q.

(P
3.5).
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(c)
Since

ρ̃(ν
,t

2 )
denotes

the
spectral

energy
density

at
tim

e
t
2 ,

w
e
can

w
rite

d
N

2
=

ρ̃(ν
2 ,t

2 )
a
3(t

2 )
V

c
d
ν
2

h
ν
2

,
(P

3.6)

using
the

sam
e
logic

as
in

E
q.(P

3.5).
U
se

d
N

2
=

d
N

1
to

show
that

ρ̃(ν
2 ,t

2 )
=

a
3(t

1 )
a
3(t

2 )
ρ̃(ν

1 ,t
1 )

.
(P

3.7)

U
se

the
above

equation
to

show
that

E
q.

(P
3.3)

is
satisfied,

for
T
(t)

given
by

E
q.

(P
3.4).

T
otal

p
oin

ts
for

P
rob

lem
S
et

7:
65.


