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PROBLEM SET 7

DUE DATE: Friday, November 15, 2013

READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chap-
ter 8 (Epilogue: The Prospect Ahead), and Afterword: Cosmology Since 1977.
There is no reading assignment from Ryden this week, but if you would like
to read ahead, you will be asked to read Chapter 9 (The Cosmic Microwave
Background) and Chapter 11 (Inflation and the Very Early Universe) before
the end of the semester.

UPCOMING QUIZ: Thursday, December 5, 2013.

PROBLEM 1: ENTROPY AND THE BACKGROUND NEUTRINO
TEMPERATURE (15 points)

The formula for the entropy density of black-body radiation is given in Lecture
Notes 6. The derivation of this formula has been left to the statistical mechanics
course that you either have taken or hopefully will take. For our purposes, the
important point is that the early universe remains very close to thermal equilibrium,
and therefore entropy is conserved. The conservation of entropy applies even during
periods when particles, such as electron-positron pairs, are “freezing out” of the
thermal equilibrium mix. Since total entropy is conserved, the entropy density falls
off as 1/a3(t).

When the electron-positron pairs disappear from the thermal equilibrium mix-
ture as kT falls below mec

2 = 0.511 MeV, the weak interactions have such low cross
sections that the neutrinos have essentially decoupled. To a good approximation, all
of the energy and entropy released by the annihilation of electrons and positrons is
added to the photon gas, and the neutrinos are unaffected. Use these facts to show
that as electron-positron pair annihilation takes place, aTγ increases by a factor of
(11/4)1/3, while aTν remains constant. It follows that after the disappearance of
the electron-positron pairs, Tν/Tγ = (4/11)1/3. As far as we know, nothing hap-
pens that significantly effects this ratio right up to the present day. So we expect
today a background of thermal neutrinos which are slightly colder than the 2.7◦K
background of photons.
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PROBLEM 2: FREEZE-OUT OF MUONS (25 points)

A particle called the muon seems to be essentially identical to the electron,
except that it is heavier— the mass/energy of a muon is 106 MeV, compared to
0.511 MeV for the electron. The muon (µ−) has the same charge as an electron,
denoted by −e. There is also an antimuon (µ+), analogous to the positron, with
charge +e. The muon and antimuon have the same spin as the electron. There is
no known particle with a mass between that of an electron and that of a muon.

(a) The formula for the energy density of black-body radiation, as given by
Eq. (6.48) of the lecture notes,

u = g
π2

30
(kT )4

(h̄c)3
,

is written in terms of a normalization constant g. What is the value of g for
the muons, taking µ+ and µ− together?

(b) When kT is just above 106 MeV as the universe cools, what particles besides
the muons are contained in the thermal radiation that fills the universe? What
is the contribution to g from each of these particles?

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium
radiation. At these temperatures all of the other particles in the black-body
radiation are interacting fast enough to maintain equilibrium, so the heat given
off from the muons is shared among all the other particles. Letting a denote the
Robertson-Walker scale factor, by what factor does the quantity aT increase
when the muons disappear?

PROBLEM 3: THE REDSHIFT OF THE COSMIC MICROWAVE
BACKGROUND (25 points)

It was mentioned in Lecture Notes 6 that the black-body spectrum has the
peculiar feature that it maintains its form under uniform redshift. That is, as
the universe expands, even if the photons do not interact with anything, they will
continue to be described by a black-body spectrum, although at a temperature
that decreases as the universe expands. Thus, even though the cosmic microwave
background (CMB) has not been interacting significantly with matter since 350,000
years after the big bang, the radiation today still has a black-body spectrum. In this
problem we will demonstrate this important property of the black-body spectrum.

The spectral energy density ρν(ν, T ) for the thermal (black-body) radiation of
photons at temperature T was stated in Lecture Notes 6 as Eq. (6.71), which we
can rewrite as

ρν(ν, T ) =
16π2h̄ν3

c3

1
ehν/kT − 1

, (P3.1)
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where h = 2πh̄ is Planck’s original constant. ρν(ν, T ) dν is the energy per unit
volume carried by photons whose frequency is in the interval [ν, ν + dν]. In this
problem we will assume that this formula holds at some initial time t1, when the
temperature had some value T1. We will let ρ̃(ν, t) denote the spectral distribution
for photons in the universe, which is a function of frequency ν and time t. Thus,
our assumption about the initial condition can be expressed as

ρ̃(ν, t1) = ρν(ν, T1) . (P3.2)

The photons redshift as the universe expands, and to a good approximation
the redshift and the dilution of photons due to the expansion are the only physical
effects that cause the distribution of photons to evolve. Thus, using our knowledge
of the redshift, we can calculate the spectral distribution ρ̃(ν, t2) at some later time
t2 > t1. It is not obvious that ρ̃(ν, t2) will be a thermal distribution, but in fact we
will be able to show that

ρ̃(ν, t2) = ρ
(
ν, T (t2)

)
, (P3.3)

where in fact T (t2) will agree with what we already know about the evolution of T
in a radiation-dominated universe:

T (t2) =
a(t1)
a(t2)

T1 . (P3.4)

To follow the evolution of the photons from time t1 to time t2, we can imagine
selecting a region of comoving coordinates with coordinate volume Vc. Within this
comoving volume, we can imagine tagging all the photons in a specified infinitesimal
range of frequencies, those between ν1 and ν1 + dν1. Recalling that the energy of
each such photon is hν, the number dN1 of tagged photons is then

dN1 =
ρ̃(ν1, t1) a3(t1)Vc dν1

hν1
. (P3.5)

(a) We now wish to follow the photons in this frequency range from time t1 to time
t2, during which time each photon redshifts. At the latter time we can denote
the range of frequencies by ν2 to ν2 + dν2. Express ν2 and dν2 in terms of ν1

and dν1, assuming that the scale factor a(t) is given.

(b) At time t2 we can imagine tagging all the photons in the frequency range ν2 to
ν2+dν2 that are found in the original comoving region with coordinate volume
Vc. Explain why the number dN2 of such photons, on average, will equal dN1

as calculated in Eq. (P3.5).
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(c) Since ρ̃(ν, t2) denotes the spectral energy density at time t2, we can write

dN2 =
ρ̃(ν2, t2) a3(t2)Vc dν2

hν2
, (P3.6)

using the same logic as in Eq. (P3.5). Use dN2 = dN1 to show that

ρ̃(ν2, t2) =
a3(t1)
a3(t2)

ρ̃(ν1, t1) . (P3.7)

Use the above equation to show that Eq. (P3.3) is satisfied, for T (t) given by
Eq. (P3.4).

Total points for Problem Set 7: 65.


