

 (q) ч,

 ter 9 (The Cosmic Microwave Background).
 10, 2013.

8 LAS INGTGOYd

Prof. Alan Guth

XŋOTONHOGL HO GLOLILLSNI SLLASSOHOVSSVN

Thex

 the standard cosmological model. In particular, they calculated the present redshift Vol. 88, article 044038 (2013)) in which they investigated the causal connections in David I. Kaiser, and Jason Gallicchio, "The Shared Causal Pasts and Futures of
Cosmological Events," http://arxiv.org/abs/arXiv:1305.3943, Physical Review D,

above ($\Omega_{m, 0}, \Omega_{r, 0}$, etc.), but it might include x as a variable of integration. expression should depend only on H_{0} and the various contributions to Ω_{0} listed

(a) (10 points) Let $x(t)$ denote the ratio

 Problems for Quiz 3, from 2011. Since the mass density of mysterious stuff falls off energy, and the same mysterious stuff that was introduced in Problem 7 of Review
 if you think about the solution and write your own version.

 (squopd 0द)

Riess was an MIT undergraduate physics major，graduating in 1992．） al．，http：／／arXiv．org／abs／astro－ph／0402512．【（By the way，the lead author Adam

 （s7d 0\％

PROBLEM 5：PLOTTING THE SUPERNOVA DATA（EXTRA CREDIT，
$299,792,458 \mathrm{~m} / \mathrm{s}$ ．

 （If you are not confident in the expression that you obtained in Problem 4 for the be sure that it is labeled well enough to be readable to someone other than yourself．

$\mathrm{G} \mathrm{G}+\left(\frac{\mathrm{\partial d} \mathrm{~N} \mathrm{I}}{T p}\right){ }^{0 \tau \% \mathrm{O}} \mathrm{G}=\|$

se（0ZI•d）

： 0007 •TV L＇G SSGIY INOYH VLVG DNILLOTd GSOHL YOH GLON
 even though the data does not go out that far．That way you can see what possible

 $\left.\Omega_{m, 0}=0.29, \Omega_{\mathrm{vac}, 0}=0.71.\right)$ you prefer to avoid the flat case，you can use $\Omega_{\mathrm{vac}, 0}=0.6$ ．Or，if you want to
（iii）A universe with $\Omega_{m, 0}=0.3$ and a cosmological constant，with $\Omega_{\mathrm{vac}, 0}=0.7$ ．（If
（i）A matter－dominated universe with $\Omega_{m}=1$ ．
For the cosmological models to plot，you should include
is also posted on the 8.286 web page

For your convenience，the magnitudes and redshifts for the Supernova Cosmol－
should see the note at the end of this problem．
If you choose to plot the data from the 3rd paper，Riess et al．2004，then you
either by eyeball or by some more systematic method．

 to the predicted magnitudes．The consequence is that you will be able to move your definition of magnitude all combine to give an unknown but constant contribution the precise value of the Hubble constant，and of the constant that appears in the output．Note that our ignorance of the absolute brightness of the supernova，of

 are observed with different redshifts，and hence one must apply corrections if the

credit.

 parameters." magnitudes. Thus the analysis are independent of the aforementioned normalization
 constant derived from Table 5 are all closely related (or even equivalent) quantities "The zeropoint, distance scale, absolute magnitude of the fiducial SN Ia or Hubble the graph of the distance modulus vs. z. In their own words, from Appendix A, Riess et al. emphasize that they were not concerned with this value. They were
concerned with the relative values of the distance moduli, and hence the shape of
 closely reproduced if I choose $H_{0}=66 \mathrm{~km}-\mathrm{sec}^{-1}-\mathrm{Mpc}^{-1}$. This seems a little on et al. do not specify what value they used, but I found that their curve is most In plotting a theoretical curve, you will need to choose a value for H_{0}. Riess
Thus, a specified value of the distance modulus μ implies a definite value of the
ratio J / P.

radius d. The luminosity distance is therefore defined as That is, the power would be distributed uniformly over the surface of a sphere at an object radiated power P in a spherically symmetric pattern, then the energy flux
J at a distance d would be Euclidean universe. More explicitly, if we lived in a static Euclidean universe and have to be located to result in the observed brightness, if we were living in a static observed brightness of the object. It is defined as the distance that the object would
8.286 PROBLEM SET 8, FALL 2013

