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T
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8.286:
T
he

E
arly

U
niverse

N
ovem

ber
24,

2013
P
rof.

A
lan

G
uth

P
R

O
B

L
E
M

S
E
T

9

D
U

E
D

A
T

E
:
M
onday,D

ecem
ber

2,2013,at
5:00

pm
.
T
his

is
the

last
problem

set
before

Q
uiz

3.
T
here

w
ill

also
be

a
P
roblem

Set
10,

to
be

due
T
uesday,

D
ecem

ber
10,

2013.

R
E
A

D
IN

G
A

S
S
IG

N
M

E
N

T
:B

arbara
R
yden,

In
tro

d
u
ctio

n
to

C
o
sm

o
lo

g
y,C

hap-
ter

11
(Inflation

and
the

V
ery

E
arly

U
niverse.)

A
lso

read
Inflation

and
the

N
ew

E
ra

of
H

igh-P
recision

C
osm

ology,
by

A
lan

G
uth,

w
ritten

for
the

M
IT

P
hysics

D
epartm

ent
annual

new
sletter,

2002.
It

is
available

at

http://w
eb.m

it.edu/physics/new
s/physicsatm

it/physicsatm
it_02_cosm

ology.pdf

T
he

data
quoted

in
the

article
about

the
nonuniform

ities
of

the
cosm

ic
m
i-

crow
ave

background
radiation

has
since

been
superceded

by
m
uch

better
data,

but
the

conclusions
have

not
changed.

T
hey

have
only

gotten
stronger.

U
P

C
O

M
IN

G
Q

U
IZ

:
T
hursday,

D
ecem

ber
5,2013.

P
R

O
B

L
E
M

S
6

A
N

D
7:

T
hese

extra
credit

problem
s
can

be
handed

in
anytim

e
before

Friday,
D
ecem

ber
9,

and
so

the
solutions

w
ill

not
be

posted
until

that
tim

e.

P
R

O
B

L
E
M

1:
B

IG
B

A
N

G
N

U
C

L
E
O

S
Y

N
T

H
E
S
IS

(20
points)

T
he

calculations
of

big
bang

nucleosynthesis
depend

on
a
large

num
ber

of
m
easured

param
eters.

B
elow

you
are

asked
to

qualitatively
describe

the
effects

of
changing

som
e
of

these
param

eters.
Include

a
sentence

or
tw

o
to

explain
each

of
your

answ
ers.

(T
hese

topics
have

not
been

discussed
in

class,but
you

are
expected

to
be

able
to

answ
er

the
questions

on
the

basis
of

your
readings

in
W
einberg’s

and
R
yden’s

books.)

(a)
(5

points)
Suppose

an
extra

neutrino
species

is
added

to
the

calculation.
W
ould

the
predicted

helium
abundance

go
up

or
dow

n?

(b)
(5

points)
Suppose

the
w
eak

interactions
w
ere

stronger
than

they
actually

are,
so

that
the

therm
al

equilibrium
distribution

betw
een

neutrons
and

protons
w
ere

m
aintained

until
k
T

≈
0
.25

M
eV

.W
ould

the
predicted

helium
abundance

be
larger

or
sm

aller
than

in
the

standard
m
odel?

(c)
(5

points)
Suppose

the
proton-neutron

m
ass

difference
w
ere

larger
than

the
actualvalue

of1.29
M
eV

/c
2.

W
ould

the
predicted

helium
abundance

be
larger

or
sm

aller
than

in
the

standard
calculation?

8.286
P

R
O

B
L
E

M
S
E

T
9,

F
A

L
L

2013
p
.
2

(d)
(5

points)
T
he

standard
theory

of
big

bang
nucleosynthesis

assum
es

that
the

m
atter

in
the

universe
w
as

distributed
hom

ogeneously
during

the
era

of
nu-

cleosynthesis,
but

the
alternative

possibility
of

inhom
ogeneous

big-bang
nucle-

osynthesis
has

been
discussed

since
the

1980s.
Inhom

ogeneous
nucleosynthesis

hinges
on

the
hypothesis

that
baryons

becam
e
clum

ped
during

a
phase

transi-
tion

at
t≈

10 −
6
second,w

hen
the

hot
quark

soup
converted

to
a
gas

ofm
ainly

protons,
neutrons,

and
in

the
early

stages,
pions.

T
he

baryons
w
ould

then
be

concentrated
in

sm
all

nuggets,
w
ith

a
com

paratively
low

density
outside

of
these

nuggets.
A
fter

the
phase

transition
but

before
nucleosynthesis,

the
neu-

trons
w
ould

have
the

opportunity
to

diffuse
aw

ay
from

these
nuggets,becom

ing
m
ore

or
less

uniform
ly

distributed
in

space.
T
he

protons,
how

ever,
since

they
are

charged,
interact

electrom
agnetically

w
ith

the
plasm

a
that

fills
the

uni-
verse,

and
therefore

have
a
m
uch

shorter
m
ean

free
path

than
the

neutrons.
M
ost

of
the

protons,
therefore,

rem
ain

concentrated
in

the
nuggets.

D
oes

this
scenario

result
in

an
increase

or
a
decrease

in
the

expected
helium

abundance?

P
R

O
B

L
E
M

2:
M

A
S
S

D
E
N

S
IT

Y
O

F
V
A

C
U

U
M

F
L
U

C
T

U
A

T
IO

N
S

(25
points)

T
he

energy
density

of
vacuum

fluctuations
has

been
discussed

qualitatively
in

lecture.
In

this
problem

w
e
w
illcalculate

in
detailthe

energy
density

associated
w
ith

quantum
fluctuations

of
the

electrom
agnetic

field.
T
o
keep

the
problem

finite,
w
e

w
illnot

consider
allofspace

at
once,but

instead
w
e
w
illconsider

the
electrom

agnetic
field

inside
a
cube

of
side

L
,
defined

by
coordinates

0≤
x≤

L
,

0≤
y≤

L
,

0≤
z≤

L
.

O
ur

goal,how
ever,

w
illbe

to
com

pute
the

energy
density

in
the

lim
it
as

the
size

of
the

box
is

taken
to

infinity.

(a)
(10

points)
T
he

electrom
agnetic

w
aves

inside
the

box
can

be
decom

posed
into

a
Fourier

sum
of

sinusoidal
norm

al
m
odes.

Suppose
w
e
consider

only
m
odes

that
extend

up
to

a
m
axim

um
w
ave

num
ber

k
m

a
x ,

or
equivalently

m
odes

that
extend

dow
n
to

a
m
inim

um
w
avelength

λ
m

in ,
w
here

k
m

a
x
=

2
π

λ
m

in
.

H
ow

m
any

such
m
odes

are
there?

I
do

not
expect

an
exact

answ
er,

but
your

approxim
ations

should
becom

e
arbitrarily

accurate
w
hen

λ
m

in
�

L
.
(T

hese
m
ode

counting
techniques

are
probably

fam
iliar

to
m
any

of
you,

but
in

case
they

are
not

I
have

attached
an

extended
hint

after
part

(c).)
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(b)
(10

points)
W

hen
the

electrom
agnetic

field
is
described

quantum
m
echanically,

each
norm

al
m
ode

behaves
exactly

as
a
harm

onic
oscillator:

if
the

angular
frequency

of
the

m
ode

is
ω
,
then

the
quantized

energy
levels

have
energies

given
by

E
n
= (n

+
12 )

h̄
ω

,

w
here

h̄
is

P
lanck’s

original
constant

divided
by

2π
,
and

n
is

an
integer.

T
he

integer
n
is

called
the

“occupation
num

ber,”
and

is
interpreted

as
the

num
ber

ofphotons
in

the
specified

m
ode.

T
he

m
inim

um
energy

is
not

zero,but
instead

is
12
h̄
ω
,w

hich
is
the

energy
ofthe

quantum
fluctuations

ofthe
electrom

agnetic
field.

A
ssum

ing
that

the
m
ode

sum
is

cut
off

at
λ

m
in

equal
to

the
P
lanck

length
(as

defined
in

the
L
ecture

N
otes),

w
hat

is
the

total
m
ass

density
of

these
quantum

fluctuations?

(c)
(5

points)
H
ow

does
the

m
ass

density
of

the
quantum

fluctuations
of

the
elec-

trom
agnetic

field
com

pare
w
ith

the
critical

density
of

our
universe?

E
xtended

H
int:

T
he

electrom
agnetic

fields
inside

a
closed

box
can

be
expanded

as
the

sum
of

m
odes,

each
of

w
hich

has
a
sinusoidally

varying
tim

e
dependence,

but
the

precise
form

ofthese
m
odes

depends
on

the
nature

ofthe
boundary

conditions
on

the
w
alls

of
the

box.
P
hysically

reasonable
boundary

conditions,
such

as
total

reflection,
are

in
fact

diffi
cult

to
use

in
calculations.

H
ow

ever,
it

is
know

n
that

in
the

lim
it

of
an

infinite-sized
box,

the
nature

of
the

boundary
conditions

w
ill

not
m
ake

any
difference.

W
e
are

therefore
free

to
choose

the
sim

plest
boundary

conditions
that

w
e
can

im
agine,

and
for

this
purpose

w
e
w
ill

choose
periodic

boundary
conditions.

T
hat

is,
w
e
w
ill

assum
e
that

the
fields

and
their

norm
al

derivatives
on

each
w
all

are
fixed

to
precisely

m
atch

the
fields

and
their

norm
al

derivatives
on

the
opposite

w
all.T

o
begin,

w
e
consider

a
w
ave

in
one

dim
ension,

m
oving

at
the

speed
of

light.
Such

w
aves

are
m
ost

easily
described

in
term

s
of

com
plex

exponentials.
If

A
(x

,t)
represents

the
am

plitude
ofthe

w
ave,then

a
sinusoidalw

ave
m
oving

in
the

positive
x-direction

can
be

w
ritten

asA
(x

,t)
=

R
e [B

e
ik

(x−
c
t) ]

,

w
here

B
is

a
com

plex
constant

and
k
is

a
real

constant.
D
efining

ω
=

c|k|,
w
aves

in
either

direction
can

be
w
ritten

as

A
(x

,t)
=

R
e [B

e
i(k

x−
ω

t) ]
,

w
here

the
sign

of
k
determ

ines
the

direction.
T
o
be

periodic
w
ith

period
L
,
the

param
eter

k
m
ust

satisfy
k
L
=

2
π
n
,
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w
here

n
is

an
integer.

So
the

spacing
betw

een
m
odes

is
∆
k
=

2
π
/
L
.
T
he

density
of

m
odes

d
N
/
d
k
(i.e.,

the
num

ber
of

m
odes

per
interval

of
k)

is
then

one
divided

by
the

spacing,
or

1
/∆

k,
sod

Nd
k

=
L2
π

(one
dim

ension)
.

In
three

dim
ensions,

a
sinusoidal

w
ave

can
be

w
ritten

as

A
(�x

,t)
=

R
e [B

e
i( �k·�x−

ω
t) ]

,

w
here

ω
=

c| �k|,
andk

x
L
=

2
π
n

x
,

k
y L

=
2
π
n

y
,

k
z L

=
2
π
n

z
,

w
here

n
x ,

n
y ,

and
n

z
are

integers.
T
hus,

in
three-dim

ensional
�k-space

the
allow

ed
values

of
�k
lie

on
a
cubical

lattice,w
ith

spacing
2π

/
L
.
In

counting
the

m
odes,

one
should

also
rem

em
ber

that
for

photons
there

is
an

extra
factor

of
2
associated

w
ith

the
fact

that
electrom

agnetic
w
aves

have
tw

o
possible

polarizations
for

each
allow

ed
value

of
�k.

P
R

O
B

L
E
M

3:
T

H
E

H
O

R
IZ

O
N

P
R

O
B

L
E
M

(20
points)

T
he

success
ofthe

big
bang

predictions
for

the
abundances

ofthe
light

elem
ents

suggests
that

the
universe

w
as

already
in

therm
al

equilibrium
at

one
second

after
the

big
bang.

A
t
this

tim
e,

the
region

w
hich

later
evolves

to
becom

e
the

observed
universe

w
as

m
any

horizon
distances

across.
T
ry

to
estim

ate
how

m
any.

Y
ou

m
ay

assum
e
that

the
universe

is
flat.

P
R

O
B

L
E
M

4:
T

H
E

F
L
A

T
N

E
S
S

P
R

O
B

L
E
M

(20
points)

A
lthough

w
e
now

know
that

Ω
0
=

1
to

an
accuracy

of
a
few

percent,
let

us
pretend

that
the

value
ofΩ

today
is
0.1.

It
nonetheless

follow
s
that

at
10 −

3
7
second

after
the

big
bang

(about
the

tim
e
of

the
grand

unified
theory

phase
transition),Ω

m
ust

have
been

extraordinarily
close

to
one.

W
riting

Ω
=

1−
δ
,estim

ate
the

value
of

δ
at

t
=

10 −
3
7
sec

(using
the

standard
cosm

ologicalm
odel).
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P
R

O
B

L
E
M

5:
T

H
E

M
A

G
N

E
T

IC
M

O
N

O
P

O
L
E

P
R

O
B

L
E
M

(20
points)

In
L
ecture

N
otes

9,
w
e
learned

that
G
rand

U
nified

T
heories

(G
U
T
s)

im
ply

the
existence

ofm
agnetic

m
onopoles,w

hich
form

as
“topologicaldefects”

(topolog-
ically

stable
knots)

in
the

configuration
of

the
H
iggs

fields
that

are
responsible

for
breaking

the
grand

unified
sym

m
etry

to
the

SU
(3)×

SU
(2)×

U
(1)

sym
m
etry

of
the

standard
m
odel

of
particle

physics.
A
t
very

high
tem

peratures
the

H
iggs

fields
os-

cillate
w
ildly,so

the
fields

average
to

zero.
A
s
the

tem
perature

T
falls,how

ever,the
system

undergoes
a
phase

transition.
T
he

phase
transition

occurs
at

a
tem

perature
T

c ,called
the

criticaltem
perature,w

here
k
T

c ≈
10

1
6
G
eV

.
A
t
this

phase
transition

the
H
iggs

fields
acquire

nonzero
expectation

values,
and

the
grand

unified
sym

m
e-

try
is

thereby
spontaneously

broken.
T
he

m
onopoles

are
tw

ists
in

the
H
iggs

field
expectation

values,so
the

m
onopoles

form
at

the
phase

transition.
E
ach

m
onopole

is
expected

to
have

a
m
ass

M
M
c
2≈

10
1
8
G
eV

,
w
here

the
subscript

“
M

”
stands

for
“m

onopole.”
A
ccording

to
an

estim
ate

first
proposed

by
T
.W

.B
.
K
ibble,

the
num

ber
density

n
M

of
m
onopoles

form
ed

at
the

phase
transition

is
of

order

n
M

∼
1
/
ξ
3
,

(P
5.1)

w
here

ξ
is

the
correlation

length
of

the
field,

defined
roughly

as
the

m
axim

um
distance

over
w
hich

the
field

at
one

point
in

space
is

correlated
w
ith

the
field

at
another

point
in

space.
T
he

correlation
length

is
certainly

no
larger

than
the

physical
horizon

distance
at

the
tim

e
of

the
phase

transition,
and

it
is

believed
to

typically
be

com
parable

to
this

upper
lim

it.
N
ote

that
an

upper
lim

it
on

ξ
is

a
low

er
lim

it
on

n
M

—
there

m
ust

be
at

least
oforder

one
m
onopole

per
horizon-sized

volum
e.

A
ssum

e
that

the
particles

of
the

grand
unified

theory
form

a
therm

al
gas

of
blackbody

radiation,as
described

by
E
q.

(6.48)
of

L
ecture

N
otes

6,

u
=

g
π

2

30
(k

T
)
4

(h̄
c)

3
,

w
ith

g
G

U
T
∼

200.
Further

assum
e
that

the
universe

is
flat

and
radiation-dom

inated
from

its
beginning

to
the

tim
e
of

the
G
U
T

phase
transition,

t
G

U
T
.

For
each

of
the

follow
ing

questions,
first

w
rite

the
answ

er
in

term
s
of

physical
constants

and
the

param
eters

T
c ,

M
M
,
and

g
G

U
T
,
and

then
evaluate

the
answ

ers
num

erically.

(a)
(5

points)
U
nder

the
assum

ptions
described

above,
at

w
hat

tim
e
t
G

U
T

does
the

phase
transition

occur?
E
xpress

your
answ

er
first

in
term

s
ofsym

bols,and
then

evaluate
it

in
seconds.

(b)
(5

points)
U
sing

E
q.(P

5.1)
and

setting
ξ
equalto

the
horizon

distance,estim
ate

the
num

ber
density

n
M

of
m
agnetic

m
onopoles

just
after

the
phase

transition.
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(c)
(5

points)
C
alculate

the
ratio

n
M
/
n

γ
ofthe

num
ber

ofm
onopoles

to
the

num
ber

of
photons

im
m
ediately

after
the

phase
R
efer

to
L
ecture

N
otes

6
to

rem
ind

yourself
about

the
num

ber
density

of
photons.

(d)
(5

points)
For

topological
reasons

m
onopoles

cannot
disappear,

but
they

form
w
ith

an
equal

num
ber

of
m
onopoles

and
antim

onopoles,
w
here

the
an-

tim
onopoles

correspond
to

tw
ists

in
the

H
iggs

field
in

the
opposite

sense.
M
onopoles

and
antim

onopoles
can

annihilate
each

other,
but

estim
ates

of
the

rate
for

this
process

show
that

it
is

negligible.
T
hus,

in
the

context
of

the
conventional

(non-inflationary)
hot

big
bang

m
odel,

the
ratio

of
m
onopoles

to
photons

w
ould

be
about

the
sam

e
today

as
it

w
as

just
after

the
phase

transi-
tion.

U
se

this
assum

ption
to

estim
ate

the
contribution

that
these

m
onopoles

w
ould

m
ake

to
the

value
of

Ω
today.

P
R

O
B

L
E
M

6:
A

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
IV

E
R

S
E
—

G
E
N

E
R

A
L

R
E
L
A

T
IV

IT
Y

D
E
S
C

R
IP

T
IO

N

(T
his

problem
is

not
required,

but
can

be
done

for
20

points
extra

credit.)

In
this

problem
and

the
next

w
e
w
ill

explore
the

connections
betw

een
special

relativity
and

the
standard

cosm
ological

m
odel

w
hich

w
e
have

been
discussing.

A
lthough

w
e
have

not
studied

general
relativity

in
detail,

the
description

of
the

cosm
ological

m
odel

that
w
e
have

been
using

is
precisely

that
of

general
relativity.

In
the

lim
it

of
zero

m
ass

density
the

effects
of

gravity
w
ill

becom
e
negligible,

and
the

form
ulas

m
ust

then
be

com
patible

w
ith

the
specialrelativity

w
hich

w
e
discussed

at
the

beginning
of

the
course.

T
he

goal
of

these
tw

o
problem

s
is

to
see

exactly
how

this
happens.

T
hese

tw
o
problem

s
w
illem

phasize
the

notion
that

a
coordinate

system
is
noth-

ing
m
ore

than
an

arbitrary
system

of
designating

points
in

spacetim
e.

A
physical

ob
ject

m
ight

therefore
look

very
different

in
tw

o
different

coordinate
system

s,
but

the
answ

er
to

any
w
ell-defined

physicalquestion
m
ust

turn
out

the
sam

e
regardless

of
w
hich

coordinate
system

is
used

in
the

calculation.

From
the

general
relativity

point
of

view
,
the

m
odel

universe
is

described
by

the
R
obertson-W

alker
spacetim

e
m
etric:

d
s
2S
T
=

−
c
2d

t
2
+

a
2(t) {

d
r
2

1−
k
r
2
+

r
2 (d

θ
2
+

sin
2
θ
d
φ

2 ) }
.

I
have

included
the

subscript
“ST

”
to

rem
ind

us
that

this
form

ula
gives

the
full

spacetim
e
m
etric,as

opposed
to

the
purely

spatialm
etric

w
hich

w
e
discussed

earlier.
T
his

form
ula

describes
the

analogue
of

the
“invariant

interval”
of

specialrelativity,
m
easured

betw
een

the
spacetim

e
points

(t,r,θ
,φ)

and
(t+

d
t,r

+
d
r,θ

+
d
θ
,φ

+
d
φ).
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T
he

evolution
of

the
m
odel

universe
is

governed
by

the
general

relation

(
ȧa )

2

=
8
π3
G
ρ−

k
c
2

a
2

,

except
in

this
case

the
m
ass

density
term

is
to

be
set

equal
to

zero.

(a)
(5

points)
Since

the
m
ass

density
is

zero,
it

is
certainly

less
than

the
critical

m
ass

density,
so

the
universe

is
open.

W
e
can

then
choose

k
=

−
1.

D
erive

an
explicit

expression
for

the
scale

factor
a(t).

(b)
(5

points)
Suppose

that
a
light

pulse
is

em
itted

by
a
com

oving
source

at
tim

e
t
e ,

and
is

received
by

a
com

oving
observer

at
tim

e
t
o .

F
ind

the
D
oppler

shift
ratio

z.

(c)
(5

points)
C
onsider

a
light

pulse
that

leaves
the

origin
at

tim
e
t
e .

In
an

in-
finitesim

al
tim

e
interval

d
t
the

pulse
w
ill

travel
a
physical

distance
d
s
=

cd
t.

Since
the

pulse
is
traveling

in
the

radialdirection
(i.e.,w

ith
d
θ
=

d
φ
=

0),one
has

cd
t
=

a(t)
d
r

√
1−

k
r
2
.

N
ote

that
this

is
a
slight

generalization
of

E
q.(3.8),w

hich
applies

for
the

case
of

a
E
uclidean

geom
etry

(k
=

0).
D
erive

a
form

ula
for

the
trajectory

r(t)
of

the
light

pulse.
Y
ou

m
ay

find
the

follow
ing

integraluseful:
∫

d
r

√
1
+

r
2
=

sinh −
1
r
.

(d)
(5

points)
U
se

these
results

to
express

the
redshift

z
in

term
s
of

the
coordinate

r
of

the
observer.

If
you

have
done

it
right,

your
answ

er
w
ill

be
independent

of
t
e .

(In
the

special
relativity

description
that

w
ill

follow
,
it

w
ill

be
obvious

w
hy

the
redshift

m
ust

be
independent

of
t
e .

C
an

you
see

the
reason

now
?)

P
R

O
B

L
E
M

7:
A

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
IV

E
R

S
E
—

S
P

E
C

IA
L

R
E
L
A

T
IV

IT
Y

D
E
S
C

R
IP

T
IO

N

(T
his

problem
is

also
not

required,
but

can
be

done
for

20
points

extra
credit.)

In
this

problem
w
e
w
ill

describe
the

sam
e
m
odel

universe
as

in
the

previous
problem

,
but

w
e
w
ill

use
the

standard
form

ulation
of

special
relativity.

W
e
w
ill

therefore
use

an
inertialcoordinate

system
,rather

than
the

com
oving

system
ofthe

previous
problem

.
P
lease

note,
how

ever,
that

in
the

usual
case

in
w
hich

gravity
is

significant,there
is
no

inertialcoordinate
system

.
O
nly

w
hen

gravity
is
absent

does
such

a
coordinate

system
exist.
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T
o
distinguish

the
tw

o
system

s,
w
e
w
ill

use
prim

es
to

denote
the

inertial
co-

ordinates:
(t ′,x ′,y ′,z ′).

Since
the

problem
is

spherically
sym

m
etric,

w
e
w
ill

also
introduce

“polar
inertialcoordinates”

(r ′,θ ′,φ ′)
w
hich

are
related

to
the

C
artesian

inertialcoordinates
by

the
usual

relations:

x ′=
r ′sin

θ ′cos
φ ′

y ′=
r ′sin

θ ′sin
φ ′

z ′=
r ′cos

θ ′
.

In
term

s
of

these
polar

inertial
coordinates,

the
invariant

spacetim
e
interval

of
special

relativity
can

be
w
ritten

as

d
s
2S
T
=

−
c
2d

t ′2
+

d
r ′2

+
r ′2 (d

θ ′2
+

sin
2
θ ′d

φ ′2 )
.

For
purposes

of
discussion

w
e
w
illintroduce

a
set

of
com

oving
observers

w
hich

travelalong
w
ith

the
m
atter

in
the

universe,follow
ing

the
H
ubble

expansion
pattern.

(A
lthough

the
m
atter

has
a
negligible

m
ass

density,I
w
illassum

e
that

enough
of

it
exists

to
define

a
velocity

at
any

point
in

space.)
T
hese

trajectories
m
ust

all
m
eet

at
som

e
spacetim

e
point

corresponding
to

the
instant

of
the

big
bang,

and
w
e
w
ill

take
that

spacetim
e
point

to
be

the
origin

of
the

coordinate
system

.
Since

there
are

no
forces

acting
in

this
m
odel

universe,
the

com
oving

observers
travel

on
lines

of
constant

velocity
(all

em
anating

from
the

origin).
T
he

m
odel

universe
is

then
confined

to
the

future
light-cone

of
the

origin.

(a)
(5

points)
T
he

cosm
ic

tim
e
variable

t
used

in
the

previous
problem

can
be

defined
as

the
tim

e
m
easured

on
the

clocks
of

the
com

oving
observers,

start-
ing

at
the

instant
of

the
big

bang.
U
sing

this
definition

and
your

know
ledge

of
special

relativity,
find

the
value

of
the

cosm
ic

tim
e
t
for

given
values

of
the

inertial
coordinates—

i.e.,
find

t(t ′,r ′).
[H

int:
first

find
the

velocity
of

a
com

oving
observer

w
ho

starts
at

the
origin

and
reaches

the
spacetim

e
point

(t ′,r ′,θ ′,φ ′).
N
ote

that
the

rotationalsym
m
etry

m
akes

θ ′and
φ ′irrelevant,so

one
can

exam
ine

m
otion

along
a
single

axis.]

(b)
(5

points)
L
et

us
assum

e
that

angular
coordinates

have
the

sam
e
m
eaning

in
the

tw
o
coordinate

system
s,

so
that

θ
=

θ ′
and

φ
=

φ ′.
W
e
w
ill

verify
in

part
(d)

below
that

this
assum

ption
is
correct.

U
sing

this
assum

ption,find
the

value
of

the
com

oving
radial

coordinate
r
in

term
s
of

the
inertial

coordinates—
i.e.,

find
r(t ′,r ′).

[H
int:

consider
an

infinitesim
al

line
segm

ent
w
hich

extends
in

the
θ-direction,

w
ith

constant
values

of
t,

r,
and

φ.
U
se

the
fact

that
this

line
segm

ent
m
ust

have
the

sam
e
physical

length,
regardless

of
w
hich

coordinate
system

is
used

to
describe

it.]
D
raw

a
graph

of
the

t ′-r ′
plane,

and
sketch

in
lines

of
constant

t
and

lines
of

constant
r.
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(c)
(5

points)
Show

that
the

radialcoordinate
r
of

the
com

oving
system

is
related

to
the

m
agnitude

of
the

velocity
in

the
inertial

system
by

r
=

v
/
c

√
1−

v
2/

c
2
.

Suppose
that

a
light

pulse
is

em
itted

at
the

spatial
origin

(r ′
=

0,
t ′

=
a
n
y
th
in

g)
and

is
received

by
another

com
oving

observer
w
ho

is
traveling

at
speed

v.
W

ith
w
hat

redshift
z
is

the
pulse

received?
E
xpress

z
as

a
function

of
r,and

com
pare

your
answ

er
to

part
(d)

of
the

previous
problem

.

(d)
(5

points)
In

this
part

w
e
w
ill

show
that

the
m
etric

of
the

com
oving

coordi-
nate

system
can

be
derived

from
the

m
etric

of
special

relativity,
a
fact

w
hich

com
pletely

establishes
the

consistency
ofthe

tw
o
descriptions.

T
o
do

this,first
w
rite

out
the

equations
of

transform
ation

in
the

form
:

t ′=
?

r ′=
?

θ ′=
?

φ ′=
?
,

w
here

the
question

m
arks

denote
expressions

in
t,

r,
θ,

and
φ.

N
ow

consider
an

infinitesim
al

spacetim
e
line

segm
ent

described
in

the
com

oving
system

by
its

tw
o
endpoints:

(t,r,θ
,φ)

and
(t

+
d
t,r

+
d
r,θ

+
d
θ
,φ

+
d
φ).

C
alculating

to
first

order
in

the
infinitesim

al
quantities,

find
the

separation
betw

een
the

coordinates
of

the
tw

o
endpoints

in
the

inertial
coordinate

system
—

i.e.,
find

d
t ′,

d
r ′,

d
θ ′,

and
d
φ ′.

N
ow

insert
these

expressions
into

the
special

relativity
expression

for
the

invariant
interval

d
s
2S

T
,
and

if
you

have
m
ade

no
m
istakes

you
w
ill

recover
the

R
obertson-W

alker
m
etric

used
in

the
previous

problem
.

D
IS

C
U

S
S
IO

N
O

F
T

H
E

Z
E
R

O
M

A
S
S

D
E
N

S
IT

Y
U

N
IV

E
R

S
E
:

T
he

tw
o
problem

s
above

dem
onstrate

how
the

general
relativistic

description
of

cosm
ology

can
reduce

to
special

relativity
w
hen

gravity
is

unim
portant,

but
it

provides
a
m
isleading

picture
ofthe

big-bang
singularity

w
hich

I
w
ould

like
to

clear
up.

F
irst,

let
m
e
point

out
that

the
m
ass

density
of

the
universe

increases
as

one
looks

backw
ard

in
tim

e.
If

the
m
ass

density
param

eter
Ω

≡
ρ
/
ρ

c
for

our
universe

has
a
value

of0.2,at
the

low
end

ofthe
em

pirically
allow

ed
range,then

the
universe

today
can

be
approxim

ately
m
odeled

by
the

zero
m
ass

density
universe.

H
ow

ever,
provided

that
Ω

is
greater

than
zero

today,the
zero

m
ass

density
m
odel

cannot
be

taken
as

a
valid

m
odel

for
the

early
history

of
the

universe.
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In
the

zero
m
ass

density
m
odel,the

big-bang
“singularity”

is
a
single

spacetim
e

point
w
hich

is
in

fact
not

singular
at

all.
In

the
com

oving
description

the
scale

factor
a(t)

equals
zero

at
this

tim
e,but

in
the

inertialsystem
one

sees
that

the
spacetim

e
m
etric

is
really

just
the

usual
sm

ooth
m
etric

of
special

relativity,
expressed

in
a

peculiar
set

of
coordinates.

In
this

m
odel

it
is

unnatural
to

think
of

t
=

0
as

really
defining

the
beginning

of
anything,

since
the

the
future

light-cone
of

the
origin

connects
sm

oothly
to

the
rest

of
the

spacetim
e.

In
the

standard
m
odelofthe

universe
w
ith

a
nonzero

m
ass

density,the
behavior

of
the

singularity
is

very
different.

F
irst

of
all,

it
really

is
singular—

one
can

m
athem

atically
prove

that
there

is
no

coordinate
system

in
w
hich

the
singularity

disappears.
T
hus,the

spacetim
e
cannot

be
joined

sm
oothly

onto
anything

that
m
ay

have
happened

earlier.

T
he

differences
betw

een
the

singularities
in

the
tw

o
m
odels

can
also

be
seen

by
looking

at
the

horizon
distance.

W
e
learned

in
L
ecture

N
otes

4
that

light
can

travel
only

a
finite

distance
from

the
tim

e
of

the
big

bang
to

som
e
arbitrary

tim
e
t,

and
that

this
“horizon

distance”
is

given
by

&
p (t)

=
a(t) ∫

t

0

c

a(t ′)
d
t ′

.

For
the

scale
factor

of
the

zero
m
ass

density
universe

as
found

in
the

problem
,
one

can
see

that
this

distance
is

infinite
for

any
t—

for
the

zero
m
ass

density
m
odel

there
is

n
o
horizon.

For
a
radiation-dom

inated
m
odel,

how
ever,

there
is

a
finite

horizon
distance

given
by

2ct.

F
inally,

in
the

zero
m
ass

density
m
odel

the
big

bang
occurs

at
a
single

point
in

spacetim
e,

but
for

a
nonzero

m
ass

density
m
odel

it
seem

s
better

to
think

of
the

big
bang

as
occurring

everyw
here

at
once.

In
term

s
of

the
R
obertson-W

alker
coordinates,

the
singularity

occurs
at

t
=

0,
for

all
values

of
r,

θ,
and

φ.
T
here

is
a
subtle

issue,
how

ever,
because

w
ith

a(t
=

0)
=

0,
all

of
these

points
have

zero
distance

from
each

other.
M
athem

atically
the

locus
t
=

0
in

a
nonzero

m
ass

density
m
odelis

too
singular

to
even

be
considered

part
ofthe

space,w
hich

consists
of

all
values

of
t
>

0.
T
hus,

the
question

of
w
hether

the
singularity

is
a
single

point
is

not
w
ell

defined.
For

any
t
>

0
the

issue
is

of
course

clear—
the

space
is

hom
ogeneous

and
infinite

(for
the

case
of

the
open

universe).
If

one
w
ishes

to
ignore

the
m
athem

atical
subtleties

and
call

the
singularity

at
t
=

0
a
single

point,
then

one
certainly

m
ust

rem
em

ber
that

the
singularity

m
akes

it
a
very

unusual
point.

O
b
jects

em
anating

from
this

“point”
can

achieve
an

infinite
separation

in
an

arbitrarily
short

length
of

tim
e.

T
otal

p
oin

ts
for

P
rob

lem
S
et

9:
105,

p
lu

s
an

op
tion

al
40

p
oin

ts
of

ex
tra

cred
it.


