((э) ұлед ләұғе ұи!ч рәриәұхә ие рәчэедде әлеч I ұои әле Кәчң

厄 (5 points) Suppose the proton-neutron mass difference were larger than the be larger or smaller than in the standard model?

 the predicted helium abundance go up or down?
 Ryden's books.)
 your answers. (These topics have not been discussed in class, but you are expected

(squiod 0б) SISAHLNXSOGTONN פNVG פIG :I NGTGO甘d time.

 UPCOMING QUIZ: Thursday, December 5, 2013.

 Department annual newsletter, 2002. It is available at

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, Chap10, 2013. before Quiz 3. There will also be a Problem Set 10, to be due Tuesday, December

6 LGS N'TGOYd

Prof. Alan Guth

$\left[(\not \supset-x) x_{2}{ }^{\partial} G\right] \partial \mathrm{U}=\left(7^{\prime} x\right) \mathrm{V}$

se шәұұ!!м әq иел ио!̣әәл!̣р-х

wall. are fixed to precisely match the fields and their normal derivatives on the opposite

 modes, each of which has a sinusoidally varying time dependence, but the precise
 Extended Hint:
(5 points) How does the mass density of the quantum fluctuations of the elec-
tromagnetic field compare with the critical density of our universe? these quantum fluctuations?

 where \hbar is Planck's original constant divided by 2π, and n is an integer. The given by

 assume that the universe is flat

${ }^{z} u \Perp Z=T^{z} y \quad{ }^{\kappa} u \Perp Z=T^{\kappa} y \quad{ }^{x} u \Perp Z=T^{x} y$

$A(\vec{x}, t)=\operatorname{Re}\left[B e^{i(\vec{k} \cdot \vec{x}-\omega t)}\right]$
In three dimensions, a sinusoidal wave can be written as by the spacing, or $1 / \Delta k$, so

so

 ‘spuoәәs u! $7!$ әұепүелә иәчך

from its beginning to the time of the GUT phase transition, $t_{\text {GUT }}$.
 - $\frac{\varepsilon(\supset \chi)}{(I q)} \frac{0 \varepsilon}{z} 6=n$
$\frac{{ }_{\mp}(L Y)}{z^{\Perp}} \frac{\varepsilon}{\Perp} b=n$
blackbody radiation, as described by Eq. (6.48) of Lecture Notes 6,
Assume that the particles of the grand unified theory form a thermal gas of

- әuппол
 to typically be comparable to this upper limit. Note that an upper limit on ξ is a physical horizon distance at the time of the phase transition, and it is believed at another point in space. The correlation length is certainly no larger than the

 $(I \cdot G d)$

${ }_{\varepsilon}{ }^{3} / \mathrm{L} \sim N u$

number density n_{M} of monopoles formed at the phase transition is of order

 breaking the grand unified symmetry to the $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ symmetry of the
 the existence of magnetic monopoles, which form as "topological defects" (topolog-

$d s_{\mathrm{ST}}^{2}=-c^{2} d t^{2}+a^{2}(t)\left\{\frac{d r^{2}}{1-k r^{2}}\right.$

of which coordinate system is used in the calculation. the answer to any well-defined physical question must turn out the same regardless

 how this happens
 the formulas must then be compatible with the special relativity which we discussed

 relativity and the standard cosmological model which we have been discussing.

PROBLEM 6: A ZERO MASS DENSITY UNIVERSE- GENERAL would make to the value of Ω today. tion. Use this assumption to estimate the contribution that these monopoles photons would be about the same today as it was just after the phase transi-

 (d) (5 points) For topological reasons monopoles cannot disappear, but they

 previous problem. Please note, however, that in the usual case in which gravity is

PROBLEM 7: A ZERO MASS DENSITY UNIVERSE- SPECIAL
RELATIVITY DESCRIPTION
PROBLEM 7: A ZERO MASS DENSITY UNIVERSE- SPECIAL
RELATIVITY DESCRIPTION

the light pulse. You may find the following integral useful: of a Euclidean geometry $(k=0)$. Derive a formula for the trajectory $r(t)$ of
 $\underline{\underline{z^{d y}-\mathrm{L}} /}(7) p=\neq р \supset$
$\quad l p$ SeY Since the pulse is traveling in the radial direction (i.e., with $d \theta=d \phi=0$), one

(c) (5 points) Consider a light pulse that leaves the origin at time t_{e}. In an inz o!̣ex भ!!
 explicit expression for the scale factor $a(t)$.

lines of constant t and lines of constant r.
 segment must have the same physical length, regardless of which coordinate the θ-direction, with constant values of t, r, and ϕ. Use the fact that this line find $r\left(t^{\prime}, r^{\prime}\right)$. [Hint: consider an infinitesimal line segment which extends in

 one can examine motion along a single axis.]
 comoving observer who starts at the origin and reaches the spacetime point the inertial coordinates - i.e., find $t\left(t^{\prime}, r^{\prime}\right)$. [Hint: first find the velocity of a of special relativity, find the value of the cosmic time t for given values of defined as the time measured on the clocks of the comoving observers, start-
ing at the instant of the big bang. Using this definition and your knowledge (a) (5 points) The cosmic time variable t used in the previous problem can be
 of constant velocity (all emanating from the origin). The model universe is then

 (Although the matter has a negligible mass density, I will assume that enough of it

special relativity can be written as
In terms of these polar inertial coordinates, the invariant spacetime interval of

$$
\theta \text { soo , } \Delta=, z
$$

ϕ u!s,θ uls,$\lambda=, ~ h$
ϕ soos,θ u!s,$~ d=, x$

 -dn provides a misleading picture of the big-bang singularity which I would like to clear

DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE:

 $i=, \phi$
$i=, \theta$
$i=, \quad$
$i=, \quad$ $t^{\prime}=$? write out the equations of transformation in the form:

$\frac{z^{\partial} / z^{n}-1 / 1}{\partial / a}=d$
 ∂ / Ω

 to the magnitude of the velocity in the inertial system by
-! ррәло
Total points for Problem Set 9: 105, plus an optional 40 points of extra an arbitrarily short length of time.

 coordinates, the singularity occurs at $t=0$, for all values of r, θ, and ϕ. There
 in spacetime, but for a nonzero mass density model it seems better to think of
 horizon distance given by $2 c t$.

, $7 p \frac{(\nmid) p}{\partial} \int_{1}^{0}(7) v=(7)^{d} \gamma$

that this "horizon distance" is given by

 happened earlier

