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Physics 8.286: The Early Universe October 13, 2018
Prof. Alan Guth

PROBLEM SET 5

DUE DATE: Friday, October 19, 2018, at 5:00 pm.

READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chapters
5 and 6, and also Barbara Ryden, Introduction to Cosmology, Chapter 10. We are
skipping Chapters 7-9 of Ryden for now, but we will come back to them. Chapter
10, about Nucleosynthesis and the Early Universe, makes good parallel reading to
Weinberg’s book, and really has no dependence on the chapters that we are skipping.

SHORT-TERM CALENDAR:

OCTOBER/NOVEMBER

MON TUES WED THURS FRI

October 8
Columbus Day

9 10
Lecture 9

11 12
PS 4 due

October 15
Lecture 10

16 17
Lecture 11

18 19
PS 5 due

October 22
Lecture 12

23 24
Lecture 13

25 26

October 29
Lecture 14

30
PS 6 due

31
Lecture 15

November 1 2

November 5
Quiz 2
— in class

6 7 8 9
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PROBLEM 1: A CIRCLE IN A NON-EUCLIDEAN GEOMETRY
(15 points)

Consider a three-dimensional space described by the following metric:

ds2 = R2

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
.

Here R and k are constants, where k will always have one of the values 1, −1, or 0. θ
and φ are angular coordinates with the usual properties: 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π,
where φ = 2π and φ = 0 are identified. r is a radial coordinate, which runs from 0 to 1 if
k = 1, and otherwise from 0 to ∞. (This is the Robertson-Walker metric of Eq. (5.27) of
Lecture Notes 5, evaluated at some particular time t, with R ≡ a(t). You should be able
to work this problem, however, whether or not you have gotten that far. The problem
requires only that you understand what a metric means.) Consider a circle described by
the equations

z = 0

x2 + y2 = r20 ,

or equivalently by the angular coordinates

r = r0

θ = π/2 .

(a) (5 points) Find the circumference S of this circle. Hint: break the circle into in-
finitesimal segments of angular size dφ, calculate the arc length of such a segment,
and integrate.

(b) (5 points) Find the radius ρ of this circle. Note that ρ is the length of a line which
runs from the origin to the circle (r = r0), along a trajectory of θ = π/2 and φ =
constant. Hint: Break the line into infinitesimal segments of coordinate length dr,
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calculate the length of such a segment, and integrate. Consider the case of open and
closed universes separately, and take k = ±1. (If you don’t remember why we can
take k = ±1, see the section called “Units” in Lecture Notes 3,). You will want the
following integrals: ∫

dr√
1− r2

= sin−1 r

and ∫
dr√

1 + r2
= sinh−1 r .

(c) (5 points) Express the circumference S in terms of the radius ρ. This result is
independent of the coordinate system which was used for the calculation, since S
and ρ are both measurable quantities. Since the space described by this metric
is homogeneous and isotropic, the answer does not depend on where the circle is
located or on how it is oriented. For the two cases of open and closed universes,
state whether S is larger or smaller than the value it would have for a Euclidean
circle of radius ρ.

PROBLEM 2: VOLUME OF A CLOSED UNIVERSE (15 points)

Calculate the total volume of a closed universe, as described by the metric of
Eq. (5.14) of Lecture Notes 5:

ds2 = R2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)]
.

Break the volume up into spherical shells of infinitesimal thickness, extending from ψ to
ψ + dψ:
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By comparing Eq. (5.14) with Eq. (5.8),

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
,

the metric for the surface of a sphere, one can see that as long as ψ is held fixed, the
metric for varying θ and φ is the same as that for a spherical surface of radius R sinψ.
Thus the area of the spherical surface is 4πR2 sin2 ψ. To find the volume, multiply this
area by the thickness of the shell (which you can read off from the metric), and then
integrate over the full range of ψ, from 0 to π.

PROBLEM 3: SURFACE BRIGHTNESS IN A CLOSED UNIVERSE (25
points)

The spacetime metric for a homogeneous, isotropic, closed universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more convenient
to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√

1− r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

The form of a(t) depends on the nature of the matter in the universe, but for this problem
you should consider a(t) to be an arbitrary function. You should simplify your answers
as far as it is possible without knowing the function a(t).

(a) (10 points) Suppose that the Earth is at the center of these coordinates, and that
we observe a spherical galaxy that is located at ψ = ψG. The light that we see was
emitted from the galaxy at time tG, and is being received today, at a time that we
call t0. At the time of emission, the galaxy had a power output P (which could
be measured, for example, in watts, where 1 watt = 1 joule/sec). The power was
radiated uniformly in all directions, in the form of photons. What is the radiation
energy flux J from this galaxy at the Earth today? Energy flux (which might be
measured in joule-m−2-sec−1) is defined as the energy per unit area per unit time
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striking a surface that is orthogonal to the direction of the energy flow. [Hint: it is
easiest to use a comoving coordinate system with the radiating galaxy at the origin.]

(b) (10 points) Suppose that the physical diameter of the galaxy at time tG was w. Find
the apparent angular size ∆θ (measured from one edge to the other) of the galaxy
as it would be observed from Earth today.

(c) (5 points) The surface brightness σ of the distant galaxy is defined to be the energy
flux J per solid angle subtended by the galaxy.* Calculate the surface brightness σ
of the galaxy described in parts (a) and (b). [Hint: if you have the right answer, it
can be written in terms of P , w, and the redshift z, without any reference to ψG.
The rapid decrease in σ with z means that high-z galaxies are difficult to distinguish
from the night sky.]

PROBLEM 4: TRAJECTORIES AND DISTANCES IN AN OPEN UNI-
VERSE (30 points)

The spacetime metric for a homogeneous, isotropic, open universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = −1. As in Problem 3, for the discussion of radial motion it is
convenient to introduce an alternative radial coordinate ψ, which in this case is related
to r by

r = sinhψ .

* Definition of solid angle: To define the solid angle subtended by the galaxy, imagine
surrounding the observer by a sphere of arbitrary radius r. The sphere should be small
compared to cosmological distances, so that Euclidean geometry is valid within the sphere.
If a picture of the galaxy is painted on the surface of the sphere so that it just covers the
real image, then the solid angle, in steradians, is the area of the picture on the sphere,
divided by r2.
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Then
dr√

1 + r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

You should treat the function a(t) as a given function. You should simplify your answers

as far as it is possible without knowing explicitly the function a(t).

(a) (5 points) Suppose that the Earth is at the origin of the coordinate system (ψ = 0),

and that at the present time, t0, we receive a light pulse from a distant galaxy G,

located at ψ = ψG. Write down an equation which determines the time tG at which

the light pulse left the galaxy. (You may assume that the light pulse travels on a

“null” trajectory, which means that dτ = 0 for any segment of it. Since you don’t

know a(t) you cannot solve this equation, so please do not try.)

(b) (5 points) What is the redshift zG of the light from galaxy G? (Your answer may

depend on tG, as well as ψG, t0, or any property of the function a(t).)

(c) (5 points) To estimate the number of galaxies that one expects to see in a given

range of redshifts, it is necessary to know the volume of the region of space that

corresponds to this range. Write an expression for the present value of the volume

that corresponds to redshifts smaller than that of galaxy G. (You may leave your

answer in the form of a definite integral, which may be expressed in terms of ψG,

tG, t0, zG, or the function a(t).)

(d) (5 points) There are a number of different ways of defining distances in cosmology,

and generally they are not equal to each other. One choice is called proper dis-

tance, which corresponds to the distance that one could in principle measure with

rulers. The proper distance is defined as the total length of a network of rulers that

are laid end to end from here to the distant galaxy. The rulers have different veloci-

ties, because each is at rest with respect to the matter in its own vicinity. They are

arranged so that, at the present instant of time, each ruler just touches its neighbors

on either side. Write down an expression for the proper distance `prop of galaxy G.

(e) (5 points) Another common definition of distance is angular size distance, de-

termined by measuring the apparent size of an object of known physical size. In a

static, Euclidean space, a small sphere of diameter w at a distance ` will subtend an
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angle ∆θ = w/`:

Motivated by this relation, cosmologists define the angular size distance `ang of an
object by

`ang ≡
w

∆θ
.

What is the angular size distance `ang of galaxy G?

(f) (5 points) A third common definition of distance is called luminosity distance,
which is determined by measuring the apparent brightness of an object for which
the actual total power output is known. In a static, Euclidean space, the energy flux
J received from a source of power P at a distance ` is given by J = P/(4π`2):

Cosmologists therefore define the luminosity distance by

`lum ≡
√

P

4πJ
.

Find the luminosity distance `lum of galaxy G. (Hint: the Robertson-Walker coor-
dinates can be shifted so that the galaxy G is at the origin.)
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PROBLEM 5: THE KLEIN DESCRIPTION OF THE G-B-L GEOMETRY

(This problem is not required, but can be done for 15 points extra credit.)

I stated in Lecture Notes 5 that the space invented by Klein, described by the distance
relation

cosh

[
d(1, 2)

a

]
=

1− x1x2 − y1y2√
1− x21 − y21

√
1− x22 − y22

,

where
x2 + y2 < 1 ,

is a two-dimensional space of constant negative curvature. In other words, this is just a
two-dimensional Robertson–Walker metric, as would be described by a two-dimensional
version of Eq. (5.27), with k = −1:

ds2 = a2
{

dr2

1 + r2
+ r2dθ2

}
.

The problem is to prove the equivalence.

(a) (5 points) As a first step, show that if x and y are replaced by the polar coordinates
defined by

x = u cos θ

y = u sin θ ,

then the distance equation can be rewritten as

cosh

[
d(1, 2)

a

]
=

1− u1u2 cos(θ1 − θ2)√
1− u21

√
1− u22

.

(b) (5 points) The next step is to derive the metric from the distance function above.
Let

u1 = u

u2 = u+ du

θ1 = θ ,

θ2 = θ + dθ ,

and
d(1, 2) = ds .

Insert these expressions into the distance function, expand everything to second order
in the infinitesimal quantities, and show that

ds2 = a2

{
du2

(1− u2)
2 +

u2dθ2

1− u2

}
.

(This part is rather messy, but you should be able to do it.)

(c) (5 points) Now find the relationship between r and u and show that the two metric
functions are identical. Hint: The coefficients of dθ2 must be the same in the two
cases. Can you now see why Klein had to impose the condition x2 + y2 < 1?
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REMINDER: The following extra credit problem from Problem Set 4 is to be turned
in with this problem set, if you choose to do it:

PROBLEM 5 (PROBLEM SET 4): ISOTROPY ABOUT TWO POINTS IN
EUCLIDEAN SPACES

(This problem is not required, but can be done for 15 points extra credit. It was first
posted with Problem Set 4, but is to be turned in with Problem Set 5.)

In Steven Weinberg’s The First Three Minutes, in Chapter 2 on page 24, he gives
an argument to show that if a space is isotropic about two distinct points, then it is
necessarily homogeneous. He is assuming Euclidean geometry, although he is not explicit
about this point. (The statement is simply not true if one allows non-Euclidean spaces
— we’ll discuss this.) Furthermore, the argument is given in the context of a universe
with only two space dimensions, but it could easily be generalized to three, and we will
not concern ourselves with remedying this simplification. The statement is true for two-
dimensional Euclidean spaces, but Weinberg’s argument is not complete. To show that
isotropy about two galaxies, 1 and 2, implies that the conditions at any two points A
and B must be identical, he constructs two circles. One circle is centered on Galaxy 1
and goes through A, and the other is centered on Galaxy 2 and goes through B. He then
argues that the conditions at A and B must both be identical to the conditions at the
point C, where the circles intersect. The problem, however, is that the two circles need
not intersect. One circle can be completely inside the other, or the two circles can be
separated and disjoint. Thus Weinberg’s proof is valid for some pairs of points A and
B, but cannot be applied to all cases. For 15 points of extra credit, devise a proof that
holds in all cases. We have not established axioms for Euclidean geometry, but you may
use in your proof any well-known fact about Euclidean geometry.

Total points for Problem Set 5: 85, plus up to 15 points extra credit.
Also up to 15 points extra credit for Problem Set 4.


