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Prof. Alan Guth

PROBLEM SET 8

DUE DATE: Friday, November 30, 2018, at 5:00 pm. This is the last problem set before
Quiz 3, which will be Wednesday, December 5. There will also be a Problem Set 10, to
be due Wednesday, December 12, the last day of classes.

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, Chapter
11 (Inflation and the Very Early Universe.) Also read Inflation and the New Era of
High-Precision Cosmology, by Alan Guth, written for the MIT Physics Department
annual newsletter, 2002. It is available at

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf

The data quoted in the article about the nonuniformities of the cosmic microwave
background radiation has since been superceded by much better data, but the con-
clusions have not changed. They have only gotten stronger.

CALENDAR THROUGH THE END OF THE TERM:

NOVEMBER/DECEMBER

MON TUES WED THURS FRI

November 19
Lecture 18

20 21
Lecture 19

22
Thanksgiving

23
Thanksgiving

November 26
Lecture 20

27 28
Lecture 21

29 30
PS 8 due

December 3
Lecture 22

4 5
Quiz 3
— in class

6 7

December 10
Lecture 23

11 12
Last Class
PS 9 due

13 14

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf
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PROBLEM 1: BIG BANG NUCLEOSYNTHESIS (20 points)

The calculations of big bang nucleosynthesis depend on a large number of measured
parameters. Below you are asked to qualitatively describe the effects of changing some
of these parameters. Include a sentence or two to explain each of your answers. (These
topics have not been discussed in class, but you are expected to be able to answer the
questions on the basis of your readings in Weinberg’s and Ryden’s books.)

(a) (5 points) Suppose an extra neutrino species is added to the calculation. Would the
predicted helium abundance go up or down?

(b) (5 points) Suppose the weak interactions were stronger than they actually are, so that
the thermal equilibrium distribution between neutrons and protons were maintained
until kT ≈ 0.25 MeV. Would the predicted helium abundance be larger or smaller
than in the standard model?

(c) (5 points) Suppose the proton-neutron mass difference were larger than the actual
value of 1.29 MeV/c2. Would the predicted helium abundance be larger or smaller
than in the standard calculation?

(d) (5 points) The standard theory of big bang nucleosynthesis assumes that the matter
in the universe was distributed homogeneously during the era of nucleosynthesis,
but the alternative possibility of inhomogeneous big-bang nucleosynthesis has been
discussed since the 1980s. Inhomogeneous nucleosynthesis hinges on the hypothesis
that baryons became clumped during a phase transition at t ≈ 10−6 second, when
the hot quark soup converted to a gas of mainly protons, neutrons, and in the early
stages, pions. The baryons would then be concentrated in small nuggets, with a
comparatively low density outside of these nuggets. After the phase transition but
before nucleosynthesis, the neutrons would have the opportunity to diffuse away from
these nuggets, becoming more or less uniformly distributed in space. The protons,
however, since they are charged, interact electromagnetically with the plasma that
fills the universe, and therefore have a much shorter mean free path than the neu-
trons. Most of the protons, therefore, remain concentrated in the nuggets. Does this
scenario result in an increase or a decrease in the expected helium abundance?
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PROBLEM 2: BRIGHTNESS VS. REDSHIFT WITH A POSSIBLE COS-
MOLOGICAL CONSTANT (25 points)

In Lecture Notes 7, we derived the relation between the power output P of a source
and the energy flux J , for the case of a closed universe:

J =
PH2

0 |Ωk,0|
4π(1 + zS)2c2 sin2 ψ(zS)

,

where

ψ(zS) =
√
|Ωk,0|

∫ zS

0

dz√
Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2

.

Here zS denotes the observed redshift, H0 denotes the present value of the Hub-
ble expansion rate, Ωm,0, Ωrad,0, and Ωvac,0 denote the present contributions to Ω
from nonrelativistic matter, radiation, and vacuum energy, respectively, and Ωk,0 ≡
1− Ωm,0 − Ωrad,0 − Ωvac,0.

(a) Derive the corresponding formula for the case of an open universe. You can of course
follow the same logic as the derivation in the lecture notes, but the solution you write
should be complete and self-contained. (I.e., you should NOT say “the derivation
is the same as the lecture notes except for . . . .”)

(b) Derive the corresponding formula for the case of a flat universe. Here there is of
course no need to repeat anything that you have already done in part (a). If you
wish you can start with the answer for an open or closed universe, taking the limit as
k → 0. The limit is delicate, however, because both the numerator and denominator
of the equation for J vanish as Ωk,0 → 0.

PROBLEM 3: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF (20
points)

READ THIS: This problem was Problem 8 of Review Problems for Quiz 3 of 2011,
and the solution is posted as http://web.mit.edu/8.286/www/quiz11/ecqr3-1.pdf. Like
Problem 4 of Problem Set 3 and Problem 3 of Problem Set 6, but unlike all other homework
problems so far, in this case you are encouraged to look at the solutions and benefit from
them. When you write your solution, you can even copy it verbatim from these solutions
if you wish, although obviously you will learn more if you think about the solution and
write your own version.

Consider a universe that contains nonrelativistic matter, radiation, vacuum energy,
and the same mysterious stuff that was introduced in Problem 7 of Review Problems
for Quiz 3, from 2011. Since the mass density of mysterious stuff falls off as 1/

√
V , where

V is the volume, it follows that in an expanding universe the mass density of mysterious
stuff falls off as 1/a3/2(t).

http://web.mit.edu/8.286/www/quiz11/ecqr3-1.pdf
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Suppose that you are given the present value of the Hubble expansion rate H0, and

also the present values of the contributions to Ω ≡ ρ/ρc from each of the constituents:

Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy density), and Ωms,0

(mysterious stuff). Our goal is to express the age of the universe t0 in terms of these

quantities.

(a) (10 points) Let x(t) denote the ratio

x(t) ≡ a(t)

a(t0)

for an arbitrary time t. Write an expression for the total mass density of the universe

ρ(t) in terms of x(t) and the given quantities described above.

(b) (10 points) Write an integral expression for the age of the universe t0. The expression

should depend only on H0 and the various contributions to Ω0 listed above (Ωm,0 ,

Ωr,0 , etc.), but it might include x as a variable of integration.

PROBLEM 4: SHARED CAUSAL PAST (20 points)

Recently several of my colleagues published a paper (Andrew S. Friedman, David

I. Kaiser, and Jason Gallicchio, “The Shared Causal Pasts and Futures of Cosmolog-

ical Events,” http://arxiv.org/abs/arXiv:1305.3943, Physical Review D, Vol. 88, arti-

cle 044038 (2013)) in which they investigated the causal connections in the standard

cosmological model. In particular, they calculated the present redshift z of a distant

quasar which has the property that a light signal, if sent from our own location at the

instant of the big bang, would have just enough time to reach the quasar and return

to us, so that we could see the reflection of the signal at the present time. They found

z = 3.65, using Ωmatter,0 = 0.315, Ωrad,0 = 9.29 × 10−5, Ωvac,0 = 0.685 − Ωrad,0, and

H0 = 67.3 km-s−1-Mpc−1. Feel free to read their paper if you like. Your job, however, is

to carry out an independent calculation to find out if they got it right.

(a) (15 points) Write an equation that determines this redshift z. The equation may

involve one or more integrals which are not evaluated, and the equation itself does

not have to be solved.

(b) (5 points) The integrals that should appear in your answer to part (a) can be eval-

uated numerically, and the whole equation you found in part (a) can be solved

numerically. Do this, and see how your z compares with 3.65.
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PROBLEM 5: MASS DENSITY OF VACUUM FLUCTUATIONS (25 points)

The energy density of vacuum fluctuations has been discussed qualitatively in lecture.
In this problem we will calculate in detail the energy density associated with quantum
fluctuations of the electromagnetic field. To keep the problem finite, we will not consider
all of space at once, but instead we will consider the electromagnetic field inside a cube
of side L, defined by coordinates

0 ≤ x ≤ L ,

0 ≤ y ≤ L ,

0 ≤ z ≤ L .

Our goal, however, will be to compute the energy density in the limit as the size of the
box is taken to infinity.

(a) (10 points) The electromagnetic waves inside the box can be decomposed into a
Fourier sum of sinusoidal normal modes. Suppose we consider only modes that
extend up to a maximum wave number kmax, or equivalently modes that extend
down to a minimum wavelength λmin, where

kmax =
2π

λmin
.

How many such modes are there? I do not expect an exact answer, but your approx-
imations should become arbitrarily accurate when λmin � L. (These mode counting
techniques are probably familiar to many of you, but in case they are not I have
attached an extended hint after part (c).)

(b) (10 points) When the electromagnetic field is described quantum mechanically, each
normal mode behaves exactly as a harmonic oscillator: if the angular frequency of
the mode is ω, then the quantized energy levels have energies given by

En =
(
n+ 1

2

)
h̄ω ,

where h̄ is Planck’s original constant divided by 2π, and n is an integer. The integer
n is called the “occupation number,” and is interpreted as the number of photons in
the specified mode. The minimum energy is not zero, but instead is 1

2 h̄ω, which is
the energy of the quantum fluctuations of the electromagnetic field. Assuming that
the mode sum is cut off at λmin equal to the Planck length (as defined in the Lecture
Notes), what is the total mass density of these quantum fluctuations?

(c) (5 points) How does the mass density of the quantum fluctuations of the electromag-
netic field compare with the critical density of our universe?

Extended Hint:
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The electromagnetic fields inside a closed box can be expanded as the sum of modes,
each of which has a sinusoidally varying time dependence, but the precise form of these
modes depends on the nature of the boundary conditions on the walls of the box. Phys-
ically reasonable boundary conditions, such as total reflection, are in fact difficult to use
in calculations. However, it is known that in the limit of an infinite-sized box, the na-
ture of the boundary conditions will not make any difference. We are therefore free to
choose the simplest boundary conditions that we can imagine, and for this purpose we
will choose periodic boundary conditions. That is, we will assume that the fields and
their normal derivatives on each wall are fixed to precisely match the fields and their
normal derivatives on the opposite wall.

To begin, we consider a wave in one dimension, moving at the speed of light. Such
waves are most easily described in terms of complex exponentials. If A(x, t) represents
the amplitude of the wave, then a sinusoidal wave moving in the positive x-direction can
be written as

A(x, t) = Re
[
Beik(x−ct)

]
,

where B is a complex constant and k is a real constant. Defining ω = c|k|, waves in
either direction can be written as

A(x, t) = Re
[
Bei(kx−ωt)

]
,

where the sign of k determines the direction. To be periodic with period L, the parameter
k must satisfy

kL = 2πn ,

where n is an integer. So the spacing between modes is ∆k = 2π/L. The density of
modes dN/dk (i.e., the number of modes per interval of k) is then one divided by the
spacing, or 1/∆k, so

dN

dk
=

L

2π
(one dimension) .

In three dimensions, a sinusoidal wave can be written as

A(~x, t) = Re
[
Bei(

~k·~x−ωt)
]
,

where ω = c|~k|, and

kxL = 2πnx , kyL = 2πny , kzL = 2πnz ,

where nx, ny, and nz are integers. Thus, in three-dimensional ~k-space the allowed values

of ~k lie on a cubical lattice, with spacing 2π/L. In counting the modes, one should also
remember that for photons there is an extra factor of 2 associated with the fact that
electromagnetic waves have two possible polarizations for each allowed value of ~k.
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PROBLEM 6: PLOTTING THE SUPERNOVA DATA (EXTRA CREDIT, 20
pts)

The original data on the Hubble diagram based on Type Ia supernovae are found in
two papers. One paper is authored by the High Z Supernova Search Team,* and the other
is by the Supernova Cosmology Project.† More recent data from the High Z team, which
includes many more data points, can be found in Riess et al., http://arXiv.org/abs/astro-
ph/0402512.¶ (By the way, the lead author Adam Riess was an MIT undergraduate
physics major, graduating in 1992.)

You are asked to plot the data from either the 2nd or 3rd of these papers, and to
include on the graph the theoretical predictions for several cosmological models.

The plot will be similar to the plots contained in these papers, and to the plot on
p. 121 of Ryden’s book, showing a graph of (corrected) magnitude m vs. redshift z. Your
graph should include the error bars. If you plot the Perlmutter et al. data, you will be
plotting “effective magnitude” m vs. redshift z. The magnitude is related to the flux
J of the observed radiation by m = − 5

2 log10(J) + const. The value of the constant
in this expression will not be needed. The word “corrected” refers both to corrections
related to the spectral sensitivity of the detectors and to the brightness of the supernova
explosions themselves. That is, the supernova at various distances are observed with
different redshifts, and hence one must apply corrections if the detectors used to measure
the radiation do not have the same sensitivity at all wavelengths. In addition, to improve
the uniformity of the supernova as standard candles, the astronomers apply a correction
based on the duration of the light output. Note that our ignorance of the absolute
brightness of the supernova, of the precise value of the Hubble constant, and of the
constant that appears in the definition of magnitude all combine to give an unknown but
constant contribution to the predicted magnitudes. The consequence is that you will be
able to move your predicted curves up or down (i.e., translate them by a fixed distance
along the m axis). You should choose the vertical positioning of your curve to optimize
your fit, either by eyeball or by some more systematic method.

If you choose to plot the data from the 3rd paper, Riess et al. 2004, then you should
see the note at the end of this problem.

For your convenience, the magnitudes and redshifts for the Supernova Cosmology
Project paper, from Tables 1 and 2, are summarized in a text file on the 8.286 web page.
The data from Table 5 of the Riess et al. 2004 paper, mentioned above, is also posted on
the 8.286 web page.

* http://arXiv.org/abs/astro-ph/9805201, later published as Riess et al., Astronomical
Journal 116, 1009 (1998).
† http://arXiv.org/abs/astro-ph/9812133, later published as Perlmutter et al., Astro-

physical Journal 517:565–586 (1999).
¶ Published as Astrophysical Journal 607:665-687 (2004).
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For the cosmological models to plot, you should include:

(i) A matter-dominated universe with Ωm = 1.

(ii) An open universe, with Ωm,0 = 0.3.

(iii) A universe with Ωm,0 = 0.3 and a cosmological constant, with Ωvac,0 = 0.7. (If you
prefer to avoid the flat case, you can use Ωvac,0 = 0.6. Or, if you want to compare
directly with Figure 4 of the Riess et al. (2004) paper, you should use Ωm,0 = 0.29,
Ωvac,0 = 0.71.)

You may include any other models if they interest you. You can draw the plot with either
a linear or a logarithmic scale in z. I would recommend extending your theoretical plot
to z = 3, if you do it logarithmically, or z = 2 if you do it linearly, even though the data
does not go out that far. That way you can see what possible knowledge can be gained
by data at higher redshift.

NOTE FOR THOSE PLOTTING DATA FROM RIESS ET AL. 2004:

Unlike the Perlmutter et al. data, the Riess et al. data is expressed in terms of the
distance modulus, which is a direct measure of the luminosity distance. The distance
modulus is defined both in the Riess et al. paper and in Ryden’s book (p. 120) as

µ = 5 log10

(
dL

1 Mpc

)
+ 25 ,

where Ryden uses the notation m−M for the distance modulus, and dL is the luminosity
distance. The luminosity distance, in turn, is really a measure of the observed brightness
of the object. It is defined as the distance that the object would have to be located to
result in the observed brightness, if we were living in a static Euclidean universe. More
explicitly, if we lived in a static Euclidean universe and an object radiated power P in a
spherically symmetric pattern, then the energy flux J at a distance d would be

J =
P

4πd2
.

That is, the power would be distributed uniformly over the surface of a sphere at radius
d. The luminosity distance is therefore defined as

dL =

√
P

4πJ
.

Thus, a specified value of the distance modulus µ implies a definite value of the ratio
J/P .

In plotting a theoretical curve, you will need to choose a value for H0. Riess et al. do
not specify what value they used, but I found that their curve is most closely reproduced
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if I choose H0 = 66 km-sec−1-Mpc−1. This seems a little on the low side, since the value
is usually estimated as 70–72 km-sec−1-Mpc−1, but Riess et al. emphasize that they
were not concerned with this value. They were concerned with the relative values of the
distance moduli, and hence the shape of the graph of the distance modulus vs. z. In their
own words, from Appendix A, “The zeropoint, distance scale, absolute magnitude of the
fiducial SN Ia or Hubble constant derived from Table 5 are all closely related (or even
equivalent) quantities which were arbitrarily set for the sample presented here. Their
correct value is not relevant for the analyses presented which only make use of differences
between SN Ia magnitudes. Thus the analysis are independent of the aforementioned
normalization parameters.”

Total points for Problem Set 8: 110, plus an optional 20 points of extra credit.


