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PROBLEM 1: THE HORIZON PROBLEM (20 points)

The success of the big bang predictions for the abundances of the light elements

suggests that the universe was already in thermal equilibrium at one second after the big

bang. At this time, the region that later evolves to become the observed universe was,

in the context of the conventional (non-inflationary) cosmological model, many horizon

distances across. Try to estimate how many. You may assume that the universe is flat,

that it was radiation-dominated for t <∼ 50,000 yr, and for this crude estimate you can

also assume that it has been matter-dominated for all t >∼ 50,000 yr, and that a(t)T (t) ≈
const for the whole period from 1 second to the present.

PROBLEM 2: THE FLATNESS PROBLEM (20 points)

Although we now know that Ω0 = 1 to an accuracy of about half a percent, let us

pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second

after the big bang (about the time of the grand unified theory phase transition), Ω must

have been extraordinarily close to one. Writing Ω = 1 − δ , estimate the value of δ at

t = 10−37 sec (using the standard cosmological model). You may again use any of the

approximations mentioned in Problem 1.
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PROBLEM 3: THE MAGNETIC MONOPOLE PROBLEM (20 points)

In Lecture Notes 9, we learned that Grand Unified Theories (GUTs) imply the
existence of magnetic monopoles, which form as “topological defects” (topologically sta-
ble knots) in the configuration of the Higgs fields that are responsible for breaking the
grand unified symmetry to the SU(3)×SU(2)×U(1) symmetry of the standard model
of particle physics. It was stated that if grand unified theories and the conventional
(non-inflationary) cosmological model were both correct, then far too many magnetic
monopoles would have been produced in the big bang. In this problem we will fill in the
mathematical steps of that argument.

At very high temperatures the Higgs fields oscillate wildly, so the fields average to
zero. As the temperature T falls, however, the system undergoes a phase transition.
The phase transition occurs at a temperature Tc, called the critical temperature, where
kTc ≈ 1016 GeV. At this phase transition the Higgs fields acquire nonzero expectation
values, and the grand unified symmetry is thereby spontaneously broken. The monopoles
are twists in the Higgs field expectation values, so the monopoles form at the phase
transition. Each monopole is expected to have a mass MMc

2 ≈ 1018 GeV, where the
subscript “M” stands for “monopole.” According to an estimate first proposed by T.W.B.
Kibble, the number density nM of monopoles formed at the phase transition is of order

nM ∼ 1/ξ3 , (3.1)

where ξ is the correlation length of the field, defined roughly as the maximum distance
over which the field at one point in space is correlated with the field at another point in
space. The correlation length is certainly no larger than the physical horizon distance
at the time of the phase transition, and it is believed to typically be comparable to this
upper limit. Note that an upper limit on ξ is a lower limit on nM — there must be at
least of order one monopole per horizon-sized volume.

Assume that the particles of the grand unified theory form a thermal gas of blackbody
radiation, as described by Eq. (6.48) of Lecture Notes 6,

u = g
π2

30

(kT )4

(h̄c)3
, (3.2)

with gGUT ∼ 200. Further assume that the universe is flat and radiation-dominated from
its beginning to the time of the GUT phase transition, tGUT.

For each of the following questions, first write the answer in terms of physical con-
stants and the parameters Tc, MM , and gGUT, and then evaluate the answers numerically.

(a) (5 points) Under the assumptions described above, at what time tGUT does the phase
transition occur? Express your answer first in terms of symbols, and then evaluate
it in seconds.
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(b) (5 points) Using Eq. (3.1) and setting ξ equal to the horizon distance, estimate the
number density nM of magnetic monopoles just after the phase transition.

(c) (5 points) Calculate the ratio nM/nγ of the number of monopoles to the number of
photons immediately after the phase transition. Refer to Lecture Notes 6 to remind
yourself about the number density of photons. You may assume that the temperature
after the phase transition is still approximately Tc.

(d) (5 points) For topological reasons monopoles cannot disappear, but they form with an
equal number of monopoles and antimonopoles, where the antimonopoles correspond
to twists in the Higgs field in the opposite sense. Monopoles and antimonopoles can
annihilate each other, but estimates of the rate for this process show that it is
negligible. Thus, in the context of the conventional (non-inflationary) hot big bang
model, the ratio of monopoles to photons would be about the same today as it was
just after the phase transition. Use this assumption to estimate the contribution
that these monopoles would make to the value of Ω today.

PROBLEM 4: EXPONENTIAL EXPANSION OF THE INFLATIONARY
UNIVERSE (15 points)

Recall that the evolution of a Robertson-Walker universe is described by the equation(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
. (4.1)

Suppose that the mass density ρ is given by the constant mass density ρf of the false
vacuum. For the case k = 0, the growing solution is given simply by

a(t) = const eχt, (4.2)

where

χ =

√
8π

3
Gρf (4.3)

and const is an arbitrary constant. Find the growing solution to this equation for an
arbitrary value of k. Be sure to consider both possibilities for the sign of k. You may
find the following integrals useful:∫

dx√
1 + x2

= sinh−1 x . (4.4a)∫
dx√

1− x2
= sin−1 x . (4.4b)∫

dx√
x2 − 1

= cosh−1 x . (4.4c)

Show that for large times one has
a(t) ∝ eχt (4.5)

for all choices of k.
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PROBLEM 5: THE HORIZON DISTANCE FOR THE PRESENT UNI-
VERSE (25 points)

We have not discussed horizon distances since the beginning of Lecture Notes 4,
when we found that

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (5.1)

This formula was derived before we discussed curved spacetimes, but the formula is valid
for any Robertson-Walker universe, whether it is open, closed, or flat.

(a) Show that the formula above is valid for closed universes. Hint: write the closed
universe metric as it was written in Eq. (7.27):

ds2 = −c2 dt2 + ã2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
, (5.2)

where

ã(t) ≡ a(t)√
k

(5.3)

and ψ is related to the usual Robertson-Walker coordinate r by

sinψ ≡
√
k r . (5.4)

Use the fact that the physical speed of light is c, or equivalently the fact that ds2 = 0
for any segment of the light ray’s trajectory.

(b) The evaluation of the formula depends of course on the form of the function a(t),
which is governed by the Friedmann equations. For the Planck 2018 best fit to the
parameters (see Table 7.1 of Lecture Notes 7, and Eq. (6.23) of Lecture Notes 6),

H0 = 67.7 km · s−1 ·Mpc−1 (5.5a)

Ωm,0 = 0.311 (5.5b)

Ωr,0 = 4.15× 10−5h−20 (Tγ,0 = 2.725 K)

= 9.05× 10−5 (5.5c)

Ωvac,0 = 1− Ωm,0 − Ωr,0 , (5.5d)

find the current horizon distance, expressed both in light-years and in Mpc. Hint:
find an integral expression for the horizon distance, similar to Eq. (7.23a) for the age
of the universe. Then do the integral numerically.

Note that the model for which you are calculating does not explicitly include inflation.
If it did, the horizon distance would turn out to be vastly larger. By ignoring the
inflationary era in calculating the integral of Eq. (5.1), we are finding an effective
horizon distance, defined as the present distance of the most distant objects that
we can in principle observe by using only photons that have left their sources after
the end of inflation. Photons that left their sources earlier than the end of inflation
have undergone incredibly large redshifts, so it is reasonable to consider them to be
completely unobservable in practice.
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PROBLEM 6: A ZERO MASS DENSITY UNIVERSE— GENERAL REL-
ATIVITY DESCRIPTION

(This problem is not required, but can be done for 20 points extra credit.)

In this problem and the next we will explore the connections between special rela-
tivity and the standard cosmological model which we have been discussing. Although we
have not studied general relativity in detail, the description of the cosmological model
that we have been using is precisely that of general relativity. In the limit of zero mass
density the effects of gravity will become negligible, and the formulas must then be com-
patible with the special relativity which we discussed at the beginning of the course. The
goal of these two problems is to see exactly how this happens.

These two problems will emphasize the notion that a coordinate system is nothing
more than an arbitrary system of designating points in spacetime. A physical object
might therefore look very different in two different coordinate systems, but the answer to
any well-defined physical question must turn out the same regardless of which coordinate
system is used in the calculation.

From the general relativity point of view, the model universe is described by the
Robertson-Walker spacetime metric:

ds2 = −c2dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
. (6.1)

This formula describes the analogue of the “invariant interval” of special relativity, mea-
sured between the spacetime points (t, r, θ, φ) and (t+ dt, r + dr, θ + dθ, φ+ dφ).

The evolution of the model universe is governed by the general relation(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (6.2)

except in this case the mass density term is to be set equal to zero.

(a) (5 points) Since the mass density is zero, it is certainly less than the critical mass
density, so the universe is open. We can then choose k = −1. Derive an explicit
expression for the scale factor a(t).

(b) (5 points) Suppose that a light pulse is emitted by a comoving source at time te, and
is received by a comoving observer at time to. Find the Doppler shift ratio z.

(c) (5 points) Consider a light pulse that leaves the origin at time te. In an infinitesimal
time interval dt the pulse will travel a physical distance ds = cdt. Since the pulse is
traveling in the radial direction (i.e., with dθ = dφ = 0), one has

cdt = a(t)
dr√

1− kr2
. (6.3)
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Note that this is a slight generalization of Eq. (2.9), which applies for the case of
a Euclidean geometry (k = 0). Derive a formula for the trajectory r(t) of the light
pulse. You may find the following integral useful:∫

dr√
1 + r2

= sinh−1 r . (6.4)

(d) (5 points) Use these results to express the redshift z in terms of the coordinate r of
the observer. If you have done it right, your answer will be independent of te. (In
the special relativity description that will follow, it will be obvious why the redshift
must be independent of te. Can you see the reason now?)

PROBLEM 7: A ZERO MASS DENSITY UNIVERSE— SPECIAL RELA-
TIVITY DESCRIPTION

(This problem is also not required, but can be done for 20 points extra credit.)

In this problem we will describe the same model universe as in the previous problem,
but we will use the standard formulation of special relativity. We will therefore use an
inertial coordinate system, rather than the comoving system of the previous problem.
Please note, however, that in the usual case in which gravity is significant, there is no
inertial coordinate system. Only when gravity is absent does such a coordinate system
exist.

To distinguish the two systems, we will use primes to denote the inertial coordinates:
(t′, x′, y′, z′). Since the problem is spherically symmetric, we will also introduce “polar
inertial coordinates” (r′, θ′, φ′) which are related to the Cartesian inertial coordinates by
the usual relations:

x′ = r′ sin θ′ cosφ′

y′ = r′ sin θ′ sinφ′

z′ = r′ cos θ′ .

(7.1)

In terms of these polar inertial coordinates, the invariant spacetime interval of special
relativity can be written as

ds2 = −c2dt′2 + dr′2 + r′2
(
dθ′2 + sin2 θ′dφ′2

)
. (7.2)

For purposes of discussion we will introduce a set of comoving observers which travel
along with the matter in the universe, following the Hubble expansion pattern. (Although
the matter has a negligible mass density, I will assume that enough of it exists to define
a velocity at any point in space.) These trajectories must all meet at some spacetime
point corresponding to the instant of the big bang, and we will take that spacetime point
to be the origin of the coordinate system. Since there are no forces acting in this model
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universe, the comoving observers travel on lines of constant velocity (all emanating from
the origin). The model universe is then confined to the future light-cone of the origin.

(a) (5 points) The cosmic time variable t used in the previous problem can be defined as
the time measured on the clocks of the comoving observers, starting at the instant
of the big bang. Using this definition and your knowledge of special relativity, find
the value of the cosmic time t for given values of the inertial coordinates— i.e., find
t(t′, r′). [Hint: first find the velocity of a comoving observer who starts at the origin
and reaches the spacetime point (t′, r′, θ′, φ′). Note that the rotational symmetry
makes θ′ and φ′ irrelevant, so one can examine motion along a single axis.]

(b) (5 points) Let us assume that angular coordinates have the same meaning in the two
coordinate systems, so that θ = θ′ and φ = φ′. We will verify in part (d) below that
this assumption is correct. Using this assumption, find the value of the comoving
radial coordinate r in terms of the inertial coordinates— i.e., find r(t′, r′). [Hint:
consider an infinitesimal line segment which extends in the θ-direction, with constant
values of t, r, and φ. Use the fact that this line segment must have the same physical
length, regardless of which coordinate system is used to describe it.] Draw a graph
of the t′-r′ plane, and sketch in lines of constant t and lines of constant r.

(c) (5 points) Show that the radial coordinate r of the comoving system is related to the
magnitude of the velocity in the inertial system by

r =
v/c√

1− v2/c2
. (7.3)

Suppose that a light pulse is emitted at the spatial origin (r′ = 0, t′ = anything)
and is received by another comoving observer who is traveling at speed v. With
what redshift z is the pulse received? Express z as a function of r, and compare your
answer to part (d) of the previous problem.

(d) (5 points) In this part we will show that the metric of the comoving coordinate
system can be derived from the metric of special relativity, a fact which completely
establishes the consistency of the two descriptions. To do this, first write out the
equations of transformation in the form:

t′ =?

r′ =?

θ′ =?

φ′ =? ,

(7.4)

where the question marks denote expressions in t, r, θ, and φ. Now consider an
infinitesimal spacetime line segment described in the comoving system by its two
endpoints: (t, r, θ, φ) and (t+ dt, r+ dr, θ+ dθ, φ+ dφ). Calculating to first order in
the infinitesimal quantities, find the separation between the coordinates of the two
endpoints in the inertial coordinate system— i.e., find dt′, dr′, dθ′, and dφ′. Now
insert these expressions into the special relativity expression for the invariant interval
ds2 , and if you have made no mistakes you will recover the Robertson-Walker metric
used in the previous problem.
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DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE:

The two problems above demonstrate how the general relativistic description of
cosmology can reduce to special relativity when gravity is unimportant, but it provides
a misleading picture of the big-bang singularity which I would like to clear up.

First, let me point out that the mass density of the universe increases as one looks
backward in time. So, if we imagine a model universe with Ω = 0.01 at a given time, it
could be well-approximated by the zero mass density universe at this time. However, no
matter how small Ω is at a given time, the mass density will increase as one follows the
model to earlier times, and the behavior of the model near t = 0 will be very different
from the zero mass density model.

In the zero mass density model, the big-bang “singularity” is a single spacetime
point which is in fact not singular at all. In the comoving description the scale factor a(t)
equals zero at this time, but in the inertial system one sees that the spacetime metric
is really just the usual smooth metric of special relativity, expressed in a peculiar set
of coordinates. In this model it is unnatural to think of t = 0 as really defining the
beginning of anything, since the the future light-cone of the origin connects smoothly to
the rest of the spacetime.

In the standard model of the universe with a nonzero mass density, the behavior of
the singularity is very different. First of all, it really is singular— one can mathematically
prove that there is no coordinate system in which the singularity disappears. Thus, the
spacetime cannot be joined smoothly onto anything that may have happened earlier.

The differences between the singularities in the two models can also be seen by
looking at the horizon distance. We learned in Lecture Notes 4 that light can travel only
a finite distance from the time of the big bang to some arbitrary time t, and that this
“horizon distance” is given by

`p(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (7.5)

For the scale factor of the zero mass density universe as found in the problem, one can
see that this distance is infinite for any t— for the zero mass density model there is no
horizon. For a radiation-dominated model, however, there is a finite horizon distance
given by 2ct.

Finally, in the zero mass density model the big bang occurs at a single point in
spacetime, but for a nonzero mass density model it seems better to think of the big
bang as occurring everywhere at once. In terms of the Robertson-Walker coordinates,
the singularity occurs at t = 0, for all values of r, θ, and φ. There is a subtle issue,
however, because with a(t = 0) = 0, all of these points have zero distance from each
other. Mathematically the locus t = 0 in a nonzero mass density model is too singular
to even be considered part of the space, which consists of all values of t > 0. Thus, the
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question of whether the singularity is a single point is not well defined. For any t > 0 the
issue is of course clear— the space is homogeneous and infinite (for the case of the open
universe). If one wishes to ignore the mathematical subtleties and call the singularity
at t = 0 a single point, then one certainly must remember that the singularity makes
it a very unusual point. Objects emanating from this “point” can achieve an infinite
separation in an arbitrarily short length of time.

Total points for Problem Set 9: 100, plus an optional 40 points of extra credit.


