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PROBLEM SET 10 SOLUTIONS

PROBLEM 1: THE MAGNETIC MONOPOLE PROBLEM (10 points)

(a) If the universe is flat and radiation dominated, then the Friedmann equation becomes

H2 =
8π

3
Gρ , (S1.1)

where

ρ =
u

c2
= g

π2

30

(kT )4

h̄3c5
. (S1.2)

We also know that for a radiation-dominated universe, a(t) ∝ t1/2, so

H =
ȧ

a
=

1

2t
, (S1.3)

and then

t =
1

2H
. (S1.4)

Using Eq. (S1.1) to replace H in the above equation, and then Eq. (S1.2) to replace
ρ, we find an equation for t in terms of T . Taking T as the temperature of the phase
transition, Tc, we find after some algebra that

t =
3

4

√
5h̄3c5

π3gGUTG

1

(kTc)2
. (S1.5)

Inserting numbers,

t =
3

4

√
5 (1.055× 10−34 J · s)3 (2.998× 108 m · s−1)5

π3 · 200 · (6.674× 10−11 m3 · kg−1 · s−2)

1

(1016 GeV)
2

×
(

1 GeV

1.602× 10−10 J

)2
√

J

kg ·m2 · s−2

= 1.713× 10−39 s .

(S1.6)
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(b) The horizon distance for a radiation-dominated universe is

`hor,phys = a(t)

∫ t

0

c

a(t′)
dt′ = t1/2

∫ t

0

c

t′1/2
dt′ = 2ct , (S1.7)

so the monopole number density just after the phase transition can be written as

nM ∼
1

ξ3
∼ 1

(2ct)3
. (S1.8)

Using Eq. (S1.5) for t, this gives

nM ∼
(

4π3gGUTG

45h̄3c7

)3/2

(kTc)
6
. (S1.9)

Numerically,

nM ∼
1(

2(2.998× 108 m · s−1) (1.713× 10−39 s)
)3

= 9.23× 1089 m−3 .

(S1.10)

(c) From Lecture Notes 6, Eq. (6.52), the number density of photons at temperature Tc
is given by

nγ = 2
ζ(3)

π2

(kTc)
3

(h̄c)3
. (S1.11)

By combining Eq. (S1.9) with Eq. (S1.11), we find

nM
nγ

=
4π5

27ζ(3)

(
πgGUTG

5h̄c5

)3/2

(kTc)
3 . (S1.12)

Inserting numbers,

nM
nγ

=
4π5

27× 1.202

(
π · 200 · (6.674× 10−11 m3 · kg−1 · s−2)

5 (1.055× 10−34 J · s) (2.998× 108 m · s−1)5

)3/2

×
(
1016 GeV

)3 × (1.602× 10−10 J

1 GeV

)3

×
(

kg ·m2 · s−2

J

)3/2

= 2.92× 10−5 .

(S1.13)
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Recall that the WMAP collaboration estimated that the ratio of baryons to photons
is only

η ≡ nb
nγ

= (6.1± 0.2)× 10−10 , (S1.14)

so this calculation is saying that the number of monopoles is more than four orders
of magnitude larger than the number of baryons!

(d) To find the contribution of monopoles to the value of Ω today, we recall that the
critical density today is given by

ρc,0 =
3H2

0

8πG
, (S1.15)

where the WMAP 7-year value of H0 is 70.4 ± 2.5 km · s−1 ·Mpc−1. (Recall that
the subscript “0” denotes the present time.) The mass density in monopoles can be
expressed as

ρM,0 =
nM
nγ

nγ,0MM , (S1.16)

where

nγ,0 = 2
ζ(3)

π2

(kT0)3

(h̄c)3
, (S1.17)

where the COBE experiment determined that T0 = 2.725 ± 0.002 K. Using
Eq. (S1.12) with Eqs. (S1.15), (S1.16), and (S1.17), we find after some algebra that

ΩM,0 ≡
ρM,0

ρc,0
=

√
3π4GMM

H2
0

(
16πgGUTG

135h̄3c7

)3/2

(kT0)3 (kTc)
3 . (S1.18)

Numerically, we could simply insert numbers into the above formula, but it is more
informative to evaluate the pieces separately and then put them together. Using the
numbers that have been stated,

ρc,0 =
3 · (70.4 km · s−1 ·Mpc−1)2

8π (6.674× 10−11 m3 · kg−1 · s−2)

×
(

1 Mpc

3.086× 1022 m

)2

×
(

1000 m

1 km

)2

= 9.31× 10−27 kg ·m−3 = 9.31× 10−30 g · cm−3 .

(S1.19)
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nγ,0 = 2
1.202

π2

((
1.380× 10−23 J ·K−1

)
(2.725 K)

)3(
(1.055× 10−34 J · s) (2.998× 108 m · s−1)

)3
= 4.09× 108 m−3 = 409 cm−3 .

(S1.20)

ρM,0 = (2.92× 10−5) (4.09× 108 m−3)
1018 GeV

(2.998× 108 m · s−1)2

×
(

1.602× 10−10 J

1 GeV

)
×
(

kg ·m2 · s−2

J

)

= 2.13× 10−5 kg ·m−3 = 2.13× 10−8 g · cm−3 .

(S1.21)

Finally,

ΩM,0 =
2.13× 10−5 kg ·m−3

9.31× 10−27 kg ·m−3
= 2.29× 1021 . (S1.22)

Thus, if conventional big bang cosmology is combined with grand unified theories,
there is a prediction that vastly too many magnetic monopoles would be produced.

PROBLEM 2: EXPONENTIAL EXPANSION OF THE INFLATIONARY
UNIVERSE (15 points)

Suppose k < 0. For convenience of notation, let κ ≡ −k > 0, and χ ≡
√

8πGρf/3.
Then the Friedmann equation becomes(

ȧ

a

)2

= χ2 +
κc2

a2
.

Taking the square root,
da

dt
=
√
χ2a2 + κc2.

Rearranging, we can integrate both sides to find∫
da√

χ2a2 + κc2
=

∫
dt .

The integral can be put in the form given in the problem set by defining x = χa/
√
κc.

Then

t = χ−1
∫

dx√
x2 + 1

= χ−1 sinh−1 x+ const .
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The constant of integration is conventionally chosen so that a = 0 at t = 0, which
corresponds here to const = 0. Then we can take the sinh of both sides of the above
equation to find

x = sinhχt

or

a =

√
κc

χ
sinhχt .

For k > 0 the calculation proceeds identically, leading to

t = χ−1
∫

dx√
x2 − 1

,

where x = χa/
√
kc. So

t = χ−1 cosh−1 x+ const .

In this case a is never equal to zero, so the usual convention to choose the origin of
time does not apply. The usual choice in this case is to set the constant in the above
formula equal to zero, so that t = 0 is the time when a(t) has its minimal value.
This gives

a =

√
kc

χ
coshχt .

This describes a universe which begins infinitely large at t = −∞, contracts to a
minimum size at t = 0, and then starts to grow without limit as t→∞.

For large times one has

sinhχt→ 1

2
eχt

coshχt→ 1

2
eχt ,

so

a(t) ∝ eχt

for all values of k, at large enough time. (One way to understand this result is
by looking at the relative importance of the terms on the right hand side of the
Friedmann equation. The curvature term scales like 1/a2, while the contribution
from the vacuum energy is constant. Therefore, for large a or equivalently for large
t, we can neglect the curvature term compared to the vacuum energy, and our solution
must reduce to the solution for a flat universe.)
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PROBLEM 3: THE HORIZON DISTANCE FOR THE PRESENT
UNIVERSE∗ (25 points)

(a) From the metric

ds2 = −c2dt2 +
a2(t)

k

{
dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

}
,

we deduce that for a light ray moving radially, that is, along ψ,

cdt =
a(t)√
k
dψ → ψ(t) =

√
k

∫ t

0

cdt′

a(t′)
.

In here we assumed that the light ray leaves the “origin” ψ = 0 at t = 0. ψ(t) is
the coordinate value of the horizon at time t for an observer at ψ = 0. The physical
horizon distance `p,hor(t) is

`p,hor(t) =
a(t)√
k
ψ(t) = a(t)

∫ t

0

cdt′

a(t′)
. (S3.1)

This is the formula we were asked to justify.

(b) To find the horizon distance now we must evaluate (S3.1) for t = t0:

`p,hor(t0) = a(t0)

∫ t0

0

cdt′

a(t′)
=

∫ t0

0

ca(t0)dt′

a(t′)
. (S3.2)

To evaluate this integral we recall the Friedmann equation in the form given in
Eq. (7.22) of Lecture Notes 7:

dt =
1

H0

x dx√
Ωrad,0 + Ωm,0x+ Ωk,0x2 + Ωvac,0x4

.

Since x(t) = a(t)/a(t0) this equation can be rewritten as

a(t0)dt

a(t)
=

1

H0

dx√
Ωrad,0 + Ωm,0x+ Ωk,0x2 + Ωvac,0x4

. (S3.3)

* Solution by Barton Zwiebach from 2007, with numerical calculations updated by
Alan Guth.



8.286 PROBLEM SET 10 SOLUTIONS, FALL 2022 p. 7

Using (S3.3) to evaluate (S3.2), x becomes the variable of integration and runs from
zero (for t = 0) to one (for t = t0):

`p,hor(t0) =
c

H0

∫ 1

0

dx√
Ωrad,0 + Ωm,0x+ Ωk,0x2 + Ωvac,0x4

. (S3.4)

This is a general formula for the horizon length. The numerical part of the evaluation
requires finding the constant β0 defined by

β0 ≡
∫ 1

0

dx√
Ωrad,0 + Ωm,0x+ Ωk,0x2 + Ωvac,0x4

, (S3.5)

so that the horizon distance is

`p,hor(t0) =
c

H0
β0 . (S3.6)

We are told that

Ωm,0 = 0.311 , Ωrad,0 = 9.05×10−5 , Ωvac,0 = 1−Ωm,0−Ωr,0 = 0.688910 . (S3.7)

The Planck team actually gives their best fit value as Ωvac,0 = 0.689, but their model
also assumes that the universe is flat. Here we are imposing exact flatness, so that
our numerics are exactly consistent with both Ωk,0 = 0 and

1 = Ωrad,0 + Ωm,0 + Ωk,0 + Ωvac,0 . (S3.8)

With these values we find:

β0 =

∫ 1

0

dx√
0.0000905 + 0.311x+ 0.688910x4

= 3.19662 , `p,hor(t0) =
c

H0
β0 .

(S3.9)

Numerical analysis Here we chose to maintain exact consistency with Ωk,0 = 0 and
Eq. (S3.8), which seemed like a safe way to proceed. Eq. (S3.8) is an exact equation of
the theoretical formalism, and the Planck 2018 fit that we are using was derived under
the assumption that Ωk,0 ≡ 0. (The Planck 2018 estimate of Ω0 = 0.9993 ± 0.0037
given as Eq. (8.8) of Lecture Notes 8 was obtained in a completely separate analysis
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by the Planck team.) However, it was not really necessary for us to enforce these

relations exactly. If we allowed a small error in Eq. (S3.8), and calculated

β′0 =

∫ 1

0

dx√
0.0000905 + 0.311x+ 0.689x4

,

we would have found β′0 = 3.19659, which is identical to the 3-figure accuracy that

we can reasonably expect. If we had ignored radiation altogether, however, and

calculated

β′′0 =

∫ 1

0

dx√
0.309x+ 0.691x4

,

we would have found β′′0 = 3.25707, which differs significantly, by about 2%.

We are asked to give the horizon distance both in light-years and Mpc’s. For this

we recall that

1

H0
=

9.778× 109 yr

h
with h = 0.677 → 1

H0
' 14.44× 109 years .

Thus we get

`p,hor(t0) = 3.20
c

H0
= 46.3× 109 light-years . (S3.11)

Roughly a horizon distance of 50 billion light years! For the computation in Mpc we

recall that

H0 = 100h
km

s ·Mpc
, with h = 0.677 H0 = 67.7

km

s ·Mpc
.

We thus find

c

H0
=

2.998× 105

67.7
Mpc = 4428 Mpc .

As a result,

`p,hor(t0) = 3.20 × 4428 = 14170 Mpc . (S3.12)

This can also be checked with the relation 1 Mpc= 3.262× 106 ly.
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PROBLEM 4: HUBBLE CROSSING FOR GALAXY-SIZE PERTURBA-
TIONS (25 points)

(a) We are assuming that the galaxy consists of matter that collapsed from a bigger
radius, and we are trying to figure out how big that radius is. So we ask, if the
universe were still homogeneous, how large would a sphere have to be to contain
enough matter to build a galaxy of mass Mgal = 1012 M�? By “matter,” here we
mean baryons and dark matter. Neither radiation nor vacuum energy collapse in the
formation of galaxies, so they do not contribute. Electrons can be considered part
of “baryonic matter,” but since an electron is about 2000 times less massive than a
proton, their contribution to the mass density of matter is small compared to the
uncertainty in the mass density of matter.

If we imagine that the matter was still uniformly distributed, its mass density ρm(t0)
would be equal to the average mass density of matter today,

ρm(t0) = Ωm,0 ρc(t0) = Ωm,0
3H2

0

8πG
, (S4.1)

were we used the facts that Ωm,0 ≡ ρm,0/ρc(t0), and ρc(t0) = 3H2
0/(8πG). The total

mass of the matter in a sphere of radius R0 is then

M =
4π

3
R3

0 ρm(t0) =
Ωm,0R

3
0H

2
0

2G
. (S4.2)

Setting M = Mgal and solving for R0,

R0 =

(
2GMgal

Ωm,0H2
0

)1/3

. (S4.3)

Ryden’s Benchmark Model takes H0 = 68 km-s−1-Mpc−1, which can be converted
to inverse seconds by

H0 = 68 km-s−1-Mpc−1 = 68
km

s ·Mpc

103 m

km

Mpc

106 pc

1 pc

3.085678× 1016 m

= 2.204× 10−18 s−1 ,

(S4.4)

where I am using the Particle Data Group’s Review of Astrophysical Constants
(https://pdg.lbl.gov/2020/reviews/rpp2020-rev-astrophysical-constants.pdf) for the
conversion factors. Then R0 can be found, in meters, as

R0 =

(
2 · 6.674× 10−11 m3 kg−1 s−2 · 1012 · 1.9884× 1030 kg

0.31 · (2.204× 10−18)
2

s−2

)1/3

= 5.607× 1022 m .

(S4.5)

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-astrophysical-constants.pdf
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Converting to light-years,

R0 = 5.607× 1022 m
ly

0.946073× 1016 m
= 5.927× 106 ly . (S4.6)

Converting to Mpc,

R0 = 5.607× 1022 m
Mpc

3.085678× 1022 m
= 1.817 Mpc . (S4.7)

All of the above answers could appropriately have been rounded to two significant
figures, since H0 and Ωm,0 are only known to that accuracy. Here I kept 4 significant
figures, to make it easier to check for consistency.

(b) For a flat universe, the first-order Friedmann equation reduces to

H2 =
8π

3
Gρ . (S4.8)

During the radiation-dominated era we can take ρ = ρrad and a(t) ∝ t1/2, so H =
ȧ/a = 1/(2t). Thus,

ρrad(t) =
3

32πGt2
. (S4.9)

(c) The mass density in radiation today is given by

ρrad,0 = Ωr,0 ρc(t0) = Ωr,0
3H2

0

8πG
. (S4.10)

The energy density in radiation is proportional to 1/a4(t), so

1 + z(t) =
a(t0)

a(t)
=

[
ρ(t)

ρ(t0)

]1/4
=

1

Ω
1/4
r,0

1√
2H0t

. (S4.11)

(d) Taking λ0 = R0 as the problem asks, we are looking for the time when

λ(t) =
a(t)

a(t0)
R0 = Ω

1/4
r,0

√
2H0tR0 (S4.12)
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is equal to the Hubble length,

cH−1(t) = 2ct . (S4.13)

So

Ω
1/4
r,0

√
2H0tR0 = 2ct

=⇒ t =
Ω

1/2
r,0 H0R

2
0

2c2
=

Ω
1/2
r,0

2H
1/3
0 c2

(
2GMgal

Ωm,0

)2/3

.
(S4.14)

Numerically, it is easiest to use the first of these expressions,

t =
(9× 10−5)1/2 · 2.204× 10−18 s−1 · (5.607× 1022 m)2

2 · (2.998× 108 m s−1)2

= 3.657× 108 s

= 3.657× 108 s
yr

3.156× 107 s
= 11.59 yr .

(S4.15)

Thus, rounded to the nearest year, we agree with Ryden’s estimate of 12 years.

PROBLEM 5: A ZERO MASS DENSITY UNIVERSE— GENERAL REL-
ATIVITY DESCRIPTION (20 points extra credit)

(a) To find the behavior of a(t) with time in a zero mass density universe set ρ = 0 and
k = −1 in the expression governing the evolution of the scale factor. The equation
becomes (

ȧ

a

)2

=
c2

a2
=⇒

ȧ(t)2 = c2 .

After taking the square root of the above equation we choose the positive sign, since
we believe the universe is expanding and not contracting. Then

da = c dt.

Integrating both sides of this equation, we have

a(t) = ct .



8.286 PROBLEM SET 10 SOLUTIONS, FALL 2022 p. 12

(b) We know the expression for the cosmological redshift is just

1 + z =
a(to)

a(te)
.

Using our result from part (a) we can rewrite this in terms of the time coordinate,

1 + z =
to
te

=⇒

z =
to
te
− 1 .

(c) We find the trajectory of the light pulse by solving

c dt = a(t)
dr√

1− kr2

for r as a fuction of t. Using the result that a(t) = ct, we rearrange the above
expression to get

dt

t
=

dr√
1− kr2

We can now integrate this from the time of emission te to the time of observation
to, finding ∫ to

te

dt′

t′
=

∫ r

0

dr′√
1− kr′2

ln(to)− ln(te) = ln(to/te) = sinh−1 r .

Solving this for r gives

r = sinh (ln(to/te)) .

To simplify this expression, remember that

sinh θ =
eθ − e−θ

2
.

Defining x ≡ to/tr, we have θ = lnx and eθ = eln x = x. Then

r =
to/te − te/to

2
.
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Alternatively we can multiply the top and bottom of the right hand side by to/te
and write

r =
(to/te)

2 − 1

2(to/te)
.

(d) We found in part (b) that

1 + z =
to
te
.

We can reexpress z in terms of r by solving for to/te in terms of r. Again using the
definition x ≡ to/te, the result from part (c) becomes

r =
x2 − 1

2x
=⇒

x2 − 2xr − 1 = 0 .

Using the quadratic formula we can solve this for x:

x =
to
te

=
2r ±

√
4r2 + 4

2
= r ±

√
r2 + 1 .

Only the positive root is valid, since the negative root would give a physically mean-
ingless negative value for to/te. Substituting this into the expression for z we get

1 + z = r +
√
r2 + 1 .

Since the mass density of the universe is zero there is no gravity and hence no
force acting on the comoving observers. We know that such observers must then be
moving with constant velocity. In the absence of gravity it is the relative velocity of
two observers that determines the redshift, so it follows that z is independent of the
time te.

PROBLEM 6: A ZERO MASS DENSITY UNIVERSE— SPECIAL RELA-
TIVITY DESCRIPTION (20 points extra credit)

(a) Since there is no gravitational field, the comoving observers move at a constant
velocity in the inertial frame of reference (described by coordinates t′, r′, θ′, and
φ′). Since the comoving observers all start at the origin of the coordinate system,
each comoving observer travels on a trajectory r′ = vt′, where v = r′/t′ will have a
different value for different comoving observers. The cosmic time t is defined to be
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the proper time as measured by comoving observers, so from the point of view of the
inertial frame t is measured on clocks that are running slowly by a factor of γ(v):

t = t′/γ(v) = t′
√

1− v2

c2
= t′

√
1− r′2

c2t′3
,

or

t =

√
t′2 − r′2

c2
.

Notice that since v is constant the comoving observers are also inertial observers in
the special relativistic sense.

(b) We are assuming that θ = θ′ and φ = φ′, and we also know that r is a rotationally
invariant coordinate, so it depends only on r′ and t′, but not θ′ or φ′. Thus, if an
infinitesimal line segment has the property that θ is the only coordinate that changes
in the Robertson-Walker (unprimed) coordinates, then θ′ is the only coordinate that
varies in the inertial (primed) coordinates. The special relativistic metric (inertial,
primed coordinates) reduces to

ds2 = r′2 dθ′2 ,

while the general relativistic metric (Robertson-Walker, unprimed coordinates) be-
comes

ds2 = a2(t) r2 dθ2.

The physical length of the line segment must be independent of the coordinate system
used to describe it, so the two expressions for ds must be equal:

r′ dθ′ = a(t) r dθ .

We know from part (a) of the previous problem that a(t) = ct, and since we are
assuming that θ′ = θ, we have

r =
r′

ct
=

r′√
c2t′2 − r′2

=
v/c√
1− v2

c2

,

where v = r′/t′.

To sketch lines of constant t in the r′-t′ plane, note that the answer to part (a) can
be rewritten as

t′ =

√
t2 +

r′2

c2
,
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which for a fixed value of t describes a hyperbola. Each value of t gives a different
hyperbola, and t = 0 gives the degenerate hyperbola t′ = |r′/c|. To sketch lines of
constant r, we can first solve the boxed equation above for v, finding

v

c
=

r√
1 + r2

.

Since v = r′/t′, this equation becomes

t′ =

√
1 + r2

cr
r′ ,

so the lines of constant r are straight lines in the r′-t′ plane. Note that as r → ±∞,
the slope approaches ±1/c:

(c) We have shown in the previous part that

r =
v/c√

1− v2/c2
and

v

c
=

r√
1 + r2

,

so all that remains is to calculate the redshift. The redshift in special relativity is
given by

1 + z =

√
1 + v/c

1− v/c
.

Substituting the previous expression for v/c, one finds

1 + z =

√√√√1 + r√
1+r2

1− r√
1+r2

=

√√
1 + r2 + r√
1 + r2 − r

.
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The expression simplifies dramatically if one multiplies the numerator and denomi-

nator by
√√

1 + r2 + r, yielding

1 + z =

√
(
√
r2 + 1 + r)(

√
r2 + 1 + r)

(
√

1 + r2 − r)(
√

1 + r2 + r)

= r +
√

1 + r2 .

As expected, this agrees with the redshift found in part (d) of the previous problem.

(d) We have the following transformation equations:

ct =
√
c2t′2 − r′2

r =
r′√

c2t′2 − r′2
θ = θ′

φ = φ′ .

We want to invert these equations in order to express t′, r′, θ′ and φ′ in terms of
t, r, θ and φ. Immediately we know θ′ = θ and φ′ = φ. Note that we get a simple
relation by using the first two equations to calculate the product of ct and r: the r′

transformation equation multiply ct with r:

ctr =
√
c2t′2 − r′2 r′√

c2t′2 − r′2
= r′ ,

so

r′ = ctr .

Substituting this result into the expression for t above yields an equation that can
be solved for t′, yielding

t′ = t
√

1 + r2 .

We thus find for an infinitesimal change in the coordinates:

dt′ =
√

1 + r2dt+
rt√

1 + r2
dr

dr′ = ct dr + cr dt

dθ′ = dθ

dφ′ = dφ .
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Finally, we substitute these expressions into the special relativistic expression for the
invariant interval ds2ST, finding

ds2ST = −c2 dt′2 + dr′2 + r′2(dθ′2 + sin2 θ′ dφ′2)

= −c2
[
dt2(1 + r2) +

r2t2

1 + r2
dr2 + 2rt dr dt

]
+ c2

[
t2dr2 + r2dt2 + 2rt dr dt

]
+ c2t2r2[dθ2 + sin2 θ dφ2]

= −c2 dt2 +
c2t2 dr2

1 + r2
+ c2t2r2[dθ2 + sin2 θ dφ2] .

Since a(t) = ct we find that the spacetime metric can be written as

ds2ST = −c2dt2 + a(t)2
[
dr2

1 + r2
+ r2(dθ2 + sin2 θdφ2)

]
,

which is identical to the general relativistic Robertson-Walker open-universe expres-
sion for the invariant spacetime interval.


