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PROBLEM SET 4 SOLUTIONS

PROBLEM 1: PHOTON TRAJECTORIES AND HORIZONS IN A FLAT
UNIVERSE WITH a(t) = bt1/2 (20 points)

(a) The defining equation for a(t) is

`phys = a(t)`c ,

so

[a(t)] =
[`phys]

[`c]
=

meter

notch
,

and

[b] =
[a(t)]

[t1/2]
=

meter

notch · second1/2
.

(b) (2 points)

H(t) =
ȧ

a
=

1
2bt
−1/2

bt1/2
=

1

2t
.

(c) According to Eq. (4.7) of Lecture Notes 4, the physical horizon distance is given by

`p,hor = a(t)

∫ t

0

c

a(t′)
dt′

= bt1/2
∫ t

0

c

bt′1/2
dt′ = ct1/2

[
2t′1/2

]t
0

= 2ct .

(d) The physical distance between A and B at any time t is given by `p,AB(t) = bt1/2`c,
so its rate of change is

d`p,AB(t)

dt
=

d

dt

[
bt1/2`c

]
=

b`c
2t1/2

,



8.286 PROBLEM SET 4 SOLUTIONS, FALL 2022 p. 2

and therefore, at time tA,

d`p,AB(t)

dt

∣∣∣∣
t=tA

=
b`c

2t
1/2
A

.

d`p,AB(t)/dt is positive, so the physical distance between A and B is increasing

with time. As tA → 0,

lim
tA→0

d`p,AB(t)

dt

∣∣∣∣
t=tA

=∞ .

So, while the physical distance between A and B approaches zero as tA → 0, the
relative recession velocity approaches infinity. So even though A and B are very
close at early times, it is not easy for a photon to travel from one to the other.

(e) The coordinate speed of light is c/a(t), so if a photon travels a coordinate distance
`c during the interval from tA to tB , then∫ tB

tA

c

a(t)
dt = `c .

Evaluating the integral,∫ tB

tA

c

a(t)
dt =

∫ tB

tA

c

bt1/2
dt =

2c

b

(
t
1/2
B − t1/2A

)
,

so

tB =

(
t
1/2
A +

b`c
2c

)2

.

Clearly as tA → 0,

lim
tA→0

tB =

(
b`c
2c

)2

,

which is a nonzero finite number.

You were not asked to do this, but we can check that our answer is consistent with
what we said earlier about the horizon distance. If the photon leaves A at time zero,



8.286 PROBLEM SET 4 SOLUTIONS, FALL 2022 p. 3

we expect it to arrive at B precisely when the physical distance between A and B is
equal to the horizon distance. If tB is given by the above formula, we see that the
physical distance between the two pieces of matter at time tB is given by

`p,AB(tB) = bt
1/2
B `c =

[
bt
−1/2
B `c

]
tB =

[
b

(
2c

b`c

)
`c

]
tB = 2ctB ,

which is just what we expect — the horizon distance.

(f) To be explicit, we can assume that A is at the origin of the comoving coordinate
system, and B is at (`c, 0, 0). Then, at time t, the photon will be at (xγ(t), 0, 0),
where

xγ(t) =

∫ t

tA

c

a(t′)
dt′

=

∫ t

tA

c

bt′1/2
dt′ =

2c

b
(t1/2 − t1/2A ) .

The coordinate separation between the photon and B is then `c − xγ(t), so the
physical separation is given by

`p,γB(t) = a(t)[`c − xγ(t)] = bt1/2`c − 2c
(
t− t1/2t1/2A

)
.

You were not asked to do so, but it is a useful check to make sure that this expression
has the expected values at the two endpoints, tA and tB :

`p,γB(tA) = bt
1/2
A `c = `p,AB(tA) ,

`p,γB(tB) = b

(
t
1/2
A `c +

b`c
2c

)
− 2c

[(
t
1/2
A +

b`c
2c

)2

− t1/2A

(
t
1/2
A +

b`c
2c

)]

=

(
t
1/2
A +

b`c
2c

){
b`c − 2c

[(
t
1/2
A +

b`c
2c

)
− t1/2A

]}
= 0 .

(g) Starting with the answer from part (f),

d`p,γB(t)

dt
=

b`c
2t1/2

− 2c

(
1−

t
1/2
A

2t1/2

)
,

so

d`p,γB(t)

dt

∣∣∣∣
t=tA

=
b`c

2t
1/2
A

− c .
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(h) Given the answer above, we see that d`p,γB(t)/dt will vanish when tA = t0A, where

t0A =

(
b`c
2c

)2

.

If tA < t0A, then d`p,γB(t)/dt > 0, which means that if the photon is emitted early,

the physical distance between it and B is initially increasing. That is, it is initially

getting further from B, rather than approaching it. As tA → 0,

lim
tA→0

[
d`p,γB(t)

dt

∣∣∣∣
t=tA

]
=∞ .

So, if the photon is emitted very early, its initial recession velocity relative to B can
be arbitrarily large.

PROBLEM 2: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-
VERSE (35 points)

(a) Using the chain rule, the standard formula for the Hubble expansion rate can be
rewritten as

H(θ) =
1

a

da

dθ

dθ

dt
.

The parametric equations for a and t for an open, matter-dominated universe are
given by

ct = α (sinh θ − θ)
a√
κ

= α (cosh θ − 1) .

Recall that the hyperbolic trigonometric functions are defined by

sinh θ ≡ eθ − e−θ

2
,

cosh θ ≡ eθ + e−θ

2
,

and they are differentiated as

d

dθ
sinh θ = cosh θ ,

d

dθ
cosh θ = sinh θ .
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So, differentiating the parametric equations,

da

dθ
= α
√
k sinh θ ,

dt

dθ
=
α

c
(cosh θ − 1) =

1

dθ/dt
.

Then

H(θ) =

[
1√

κα(cosh θ − 1)

] [
α
√
κ sinh θ

] [ c

α(cosh θ − 1)

]

=
c sinh θ

α(cosh θ − 1)2
.

(b) This problem can be attacked by at least three different methods. While you were
expected to use only one, we will show all three.

(i) One way to find ρ is to use

H2 =
8π

3
Gρ− kc2

a2
.

This is usually the safest method to find ρ for a cosmological model, since the
above equation is one of the general Friedmann equations. The equation requires
that the universe be homogeneous and isotropic, but it is valid for any form of
matter. By contrast, the two other methods that will be shown below are valid
only for “matter-dominated” universes (i.e., universes that are dominated by
nonrelativistic matter, for which the pressure is always negligible). One can
rewrite this equation as

8π

3
Gρ = H2 +

kc2

a2
.

Recalling that we described open universes by using κ ≡ −k, this can be rewrit-
ten as

8π

3
Gρ = H2 − κc2

a2
.

Replacing H by the answer in part (a) and a by its parametric equation, one
finds

8π

3
Gρ =

c2 sinh2 θ

α2(cosh θ − 1)4
− κc2

α2κ(cosh θ − 1)2

=
c2

α2(cosh θ − 1)4

[
sinh2 θ − (cosh θ − 1)2

]
.
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Now make use of the hypertrigonometric identity

cosh2 θ − sinh2 θ = 1

to simplify:

sinh2 θ − (cosh θ − 1)2 = sinh2 θ − cosh2 θ + 2 cosh θ − 1

= 2(cosh θ − 1) ,

so
8π

3
Gρ =

2c2

α2(cosh θ − 1)3
.

Dividing both sides of the equation by (8π/3)G, one finds

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(ii) Use the definition of α,

α ≡ 4π

3

Gρã3

c2
,

from Eq. (4.17) of Lecture Notes 4, with Eq. (4.39),

ã(t) ≡ a(t)√
κ
.

One can then solve for ρ, finding

ρ =
3

4π

ακ3/2c2

Ga3
.

By substituting for a(θ) by using the parametric equation, one finds the final
result:

ρ =
3

4π

ακ3/2c2

G

1

α3κ3/2(cosh θ − 1)3

=
3c2

4πGα2(cosh θ − 1)3
.

(iii) ρ can also be found from ä = −(4π/3)Gρa, as long as we know that the universe
is matter-dominated. (Be careful, however, about applying this formula in other
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situations: if the pressure cannot be neglected, then this equation has to be
modified.) To evaluate ä, again use the chain rule. Starting with ȧ,

ȧ =
da

dθ

dθ

dt
= α
√
κ sinh θ

c

α(cosh θ − 1)
=
c
√
κ sinh θ

cosh θ − 1
.

Then

ä =
dȧ

dθ

dθ

dt
=

d

dθ

[
c
√
κ sinh θ

cosh θ − 1

]
c

α(cosh θ − 1)

=
c2
√
κ

α(cosh θ − 1)

[
cosh θ

cosh θ − 1
− sinh2 θ

(cosh θ − 1)2

]
=

c2
√
κ

α(cosh θ − 1)3

[
cosh θ(cosh θ − 1)− sinh2 θ

]
=

c2
√
κ

α(cosh θ − 1)3
(1− cosh θ) = − c2

√
κ

α(cosh θ − 1)2
.

So

ä = −4π

3
Gρa =⇒ − c2

√
κ

α(cosh θ − 1)2
= −4π

3
Gρα
√
κ(cosh θ − 1) ,

and

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(c) The critical mass density satisfies the cosmological evolution equations for k = 0, so

H2 =
8π

3
Gρc .

Then

Ω ≡ ρ

ρc
=

8πGρ

3H2
.

Now replace H by the answer to part (a), and ρ by the answer to part (b):

Ω =
8πG

3

[
3

4π

c2

Gα2(cosh θ − 1)3

] [
α2(cosh θ − 1)4

c2 sinh2 θ

]
= 2

cosh θ − 1

sinh2 θ
= 2

cosh θ − 1

cosh2 θ − 1

= 2
cosh θ − 1

(cosh θ + 1)(cosh θ − 1)
=

2

cosh θ + 1
.
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The answer can be written even more compactly, if one wishes, by using a further
hypertrigonometric identity:

Ω =
2

cosh θ + 1
=

1

cosh2 1
2θ

= sech2 1

2
θ .

(d) The basic formula that determines the physical value of the horizon distance is given
by Eq. (4.7) of the lecture notes:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ .

The complication here is that a is given as a function of θ, rather than t. The
problem is handled, however, by a simple change of integration variables. One can
change the integral over t′ to an integral over θ′, provided that one replaces

dt′ → dt′

dθ′
dθ′ =

α

c
(cosh θ′ − 1)dθ′ .

One must also re-express the limits of integration in terms of θ. So

`p,horizon(t) = a
(
θ(t)

) ∫ θ(t)

0

c

a(θ′)

dt′

dθ′
dθ′

= α
√
κ
(

cosh θ(t)− 1
) ∫ θ(t)

0

c

α
√
κ(cosh θ′ − 1)

α

c
(cosh θ′ − 1) dθ′ .

= α
(

cosh θ(t)− 1
) ∫ θ(t)

0

dθ′ = α θ(t)
(

cosh θ(t)− 1
)
.

(e) The key to this problem is the use of power series expansions. When this problem
appeared as a quiz problem in 1992, I was rather surprised to find that many of the
students seemed very inexperienced in this technique. It is a very useful method of
approximation, so I strongly urge you to learn it if you don’t know it already. In
general, any sufficiently smooth function f(x) can be expanded about the point x0

by the series

f(x) = f(x0) +
1

1!
f ′(x0)(x− x0) +

1

2!
f ′′(x0)(x− x0)2

+
1

3!
f ′′′(x0)(x− x0)3 + . . . ,
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where the prime is used to denote a derivative. In particular, the exponential, sinh,
and cosh functions can be expanded about θ = 0 by the formulas

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . .

sinh θ = θ +
θ3

3!
+
θ5

5!
+
θ5

7!
. . .

cosh θ = 1 +
θ2

2!
+
θ4

4!
+
θ6

6!
+ . . . .

For this problem, we expand the parametric equations for a(θ) and t(θ), keeping the
first nonvanishing term in the power series expansions:

t =
α

c
(sinh θ − θ) =

α

c

(
θ3

3!
+ . . .

)
a = α

√
κ(cosh θ − 1) = α

√
κ

(
θ2

2!
+ . . .

)
.

The first expression can be solved for θ, giving

θ ≈
(

6ct

α

)1/3

,

which can be substituted into the second expression to give

a ≈ 1

2
α
√
κ

(
6ct

α

)2/3

.

The power series expansions for the sinh and cosh are valid whenever the terms left
out are much smaller than the last term kept, which happens when θ � 1. Given
the above relation between θ and t, this condition is equivalent to

t� α

6c
.

Thus,

t∗ ≈ α

6c
, or t∗ ≈ α

c
.
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Since there is no precise meaning to the statement that an approximation is valid,
there is no precise value for t∗.

(f) From part (c), the expression for Ω is given by

Ω =
2

cosh θ + 1
.

So,

1− Ω = 1− 2

cosh θ + 1
=

cosh θ − 1

cosh θ + 1
.

Expanding numerator and denominator in power series,

1− Ω ≈
θ2

2! + θ4

4! + . . .

2 + θ2

2! + . . .
.

Keeping only the leading terms,

1− Ω ≈
θ2

2

2
=

1

4
θ2 ,

so

1− Ω ≈ 1

4

(
6ct

α

)2/3

.

This result shows that the deviation of Ω from 1 is amplified with time. This fact
leads to a conundrum called the “flatness problem”, which will be discussed later in
the course.

A common mistake (very minor) was to keep extra terms, especially in the denom-
inator. Keeping extra terms allows a higher degree of accuracy, so there is nothing
wrong with it. However, one should always be sure to keep all terms of a given order,
since keeping only a subset of terms may or may not increase the accuracy. In this
case, an extra term in the denominator can be rewritten as a term in the numerator:

θ2

2!

2 + θ2

2!

=
1

4

θ2

1 + θ2

4

=
1

4
θ2

(
1− θ2

4
+ . . .

)
=

1

4
θ2 − 1

16
θ4 + . . . ,

where I used the expansion

1

1 + x
= 1− x+ x2 − x3 + x4 + . . . .

Thus, the extra term in the denominator is equivalent to a term in the numerator
of order θ4, but other terms proportional to θ4 have been dropped. So, it is not
worthwhile to keep the 2nd term in the expansion of the denominator.
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PROBLEM 3: THE CRUNCH OF A CLOSED, MATTER-DOMINATED
UNIVERSE (25 points)∗

Dr. Niwde measures the two quantities Ω0 (in the range of (1,∞)) and H0 < 0. All of
the quantities of interest (the time until the end of the universe tleft, the minimum z, and
the lookback time tlb,bluest) must all be stated in terms of the two physical observables Ω0

and H0. The parametric form of the evolution of the closed universe is parameterized by
the development angle θ, which needs to be determined from the two physical observables,
and the constant α which is a measure of the mass density of the universe. From class
(or Eq. (4.33) in the Lecture Notes), we found

α =
c

2|H|
Ω

(Ω− 1)3/2
. (P3.1)

The value is a constant over the course of the universe, so it can be evaluated at any
time (except θ = π); therefore insert the values of H0 and Ω0. We also have the relation
(Eq. (4.35))

cos θ =
2− Ω

Ω
. (P3.2)

This needs to be solved for θ0, with the right-hand side evaluated for Ω = Ω0. But the
function cos θ is not one to one, so the inverse is not unique. We could write

θ0 = arccos

(
2− Ω0

Ω0

)
, (P3.3)

adding the words that θ0 is to be chosen in the interval θ ∈ [π, 2π]. Such an answer is
completely correct, but it is hard to use, since calculators are not capable of responding
to such verbal instructions. Calculators normally return the “principal branch” of the
arccos(x) function, which maps x ∈ [−1, 1] to θ ∈ [0, π]. (For the arcsin(x) function, the
principal branch is conventionally taken to map x ∈ [−1, 1] to θ ∈ [−π/2, π/2].) Note
that cos θ behaves monotonically during the contracting phase, as θ varies from π to 2π,
while sin θ varies from 0 to -1 and then back to 0. Thus θ is determined uniquely by
cos θ during the contracting phase, while for each value of sin θ there are two values of θ,
which must be distinguished by an additional condition. To express θ0 in terms of the
principal branch of arccos(x), note that cos θ = cos(2π − θ). Using this, we can write

θ0 = 2π − arccos

(
2− Ω0

Ω0

)
, (P3.4)

where arccos(x) is evaluated using the principal branch. That is, θ0 defined by Eq. (P3.4)
satisfies Eq. (P3.2), and it lies in the range of π to 2π. For values of sin θ0, one uses the

∗ Solution written by Leo Stein and Alan Guth.
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identity sin θ = ±
√

1− cos2 θ (Eq. (4.37)). Since one knows that θ0 ∈ [π, 2π], and sin θ
is negative on this interval, one takes the negative root:

sin θ0 = −2
√

Ω0 − 1

Ω0
. (P3.5)

Thus, the value of t0, when Dr. Niwde makes his measurements, is given by

t0 =
α

c
(θ0 − sin θ0)

=
1

2|H|
Ω

(Ω− 1)3/2

[
2π − arccos

(
2− Ω0

Ω0

)
+

2
√

Ω0 − 1

Ω0

]
.

(P3.6)

One is now ready to find tleft = tCrunch − t0, using ctCrunch = 2πα. Evaluating this,
one finds

tleft =
Ω0

2|H0|(Ω0 − 1)3/2

[
arccos

(
2− Ω0

Ω0

)
− 2
√

Ω0 − 1

Ω0

]
. (P3.7)

(Alternatively, one could have taken t0 directly from Eq. (4.38) of Lecture Notes
4, using the choices described in the table following the equation. Rewriting Eq. (4.38)
explicitly for the contracting phase,

t0 =
1

2|H0|
Ω0

(Ω0 − 1)3/2

{
arcsin

(
−2
√

Ω0 − 1

Ω0

)
+

2
√

Ω0 − 1

Ω0

}
, (P3.8)

where arcsin(x) is chosen between π and 3
2π if ∞ ≥ Ω0 ≥ 2, and between 3

2π and 2π
if 2 ≥ Ω0 ≥ 1. In terms of the principal branch of the arcsin(x) function, this can be
written

t0 =
1

2|H0|
Ω0

(Ω0 − 1)3/2
×


[
π + arcsin

(
2
√

Ω0−1
Ω0

)
+ 2
√

Ω0−1
Ω0

]
if ∞ ≥ Ω0 ≥ 2,[

2π − arcsin
(

2
√

Ω0−1
Ω0

)
+ 2
√

Ω0−1
Ω0

]
if 2 ≥ Ω0 ≥ 1 .

(P3.9)

Finally, tleft = 2πα/c− t0 implies that

tleft =
1

2|H0|
Ω0

(Ω0 − 1)3/2
×


[
π − arcsin

(
2
√

Ω0−1
Ω0

)
− 2
√

Ω0−1
Ω0

]
if ∞ ≥ Ω0 ≥ 2,[

arcsin
(

2
√

Ω0−1
Ω0

)
− 2
√

Ω0−1
Ω0

]
if 2 ≥ Ω0 ≥ 1 ,

(P3.10)
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where arcsin(x) is evaluated using the principal branch. Note that the complexity of the
if-construction above is avoided by using the arccos function, as in Eq. (P3.7))

Continuing, we are next asked to determine the bluest blueshift that Dr. Niwde can
observe. Assume that the density of galaxies is high enough so that all possible distances
(within the horizon distance) are well represented. Then there is always a galaxy whose
light is just arriving at Dr. Niwde’s observatory at t0 for any te in the range 0 < te < t0.
We let θe ≡ θ(te) and ae ≡ a(te) denote respectively the development angle and scale
factor at time te. The bluest blueshift is then found by minimizing 1 + z = a0

ae
over all

the values of ae that are in the past of Dr. Niwde.

(As an aside, one may be concerned about whether some given value of te might
correspond to a distance beyond the horizon. This, however, can never happen, as the
horizon distance corresponds to te = 0. As long as we don’t consider negative values of
te, the points we are considering are within the horizon.)

Returning to the question of minimization, z is minimized when ae is maximized,
which happens at θe = π. Using a/

√
k = α(1− cos θ), the value of zmin is found to be

1 + zmin =
a0

ae
=

1− cos θ0

1− cos θe
=

1− cos θ0

2
. (P3.11)

Using the value of cos θ0 from Eq. (P3.2), one finds

zmin = − 1

Ω0
. (P3.12)

Finally, the lookback time is simply tlb = t0− te, where te = t(θ = π) = πα/c. Using
Eq. (P3.6) for t0, this gives

tlb =
Ω0

2|H0|(Ω0 − 1)3/2

[
π − arccos

(
2− Ω0

Ω0

)
+

2
√

Ω0 − 1

Ω0

]
. (P3.13)

Or, using Eq. (P3.9), one can write

tlb =
1

2|H0|
Ω0

(Ω0 − 1)3/2
×


[
arcsin

(
2
√

Ω0−1
Ω0

)
+ 2
√

Ω0−1
Ω0

]
if ∞ ≥ Ω0 ≥ 2,[

π − arcsin
(

2
√

Ω0−1
Ω0

)
+ 2
√

Ω0−1
Ω0

]
if 2 ≥ Ω0 ≥ 1 .

(P3.14)
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It was not asked in the problem, but one may want to know the distance to a galaxy
which is most blueshifted. The physical distance integral becomes simple when written
in terms of θ, giving

`p,bluest = α(1− cos θ0)(θ0 − θe) . (P3.15)

Inserting α, θ0, and θe = π, this is

`p,bluest =
c

|H0|
√

Ω0 − 1

[
π − arccos

(
2− Ω0

Ω0

)]
. (P3.16)

PROBLEM 4: THE AGE OF A MATTER-DOMINATED UNIVERSE AS
Ω→ 1 (15 points)

To describe the limit as Ω→ 1 from below, it is convenient to define

Ω ≡ 1− ε , (P4.1)

so we are now interested in the limit as ε→ 0 from above. We can rewrite the expression
for |H|t as

|H|t =
Ω

2(1− Ω)3/2

[
2
√

1− Ω

Ω
− arcsinh

(
2
√

1− Ω

Ω

)]
(P4.2)

=
1− ε
2ε3/2

{
2
√
ε

1− ε
− arcsinh

(
2
√
ε

1− ε

)}
≡ f(ε) . (P4.3)

Using the power series for arcsinh(x) given in the problem statement, we can write

f(ε) =
1− ε
2ε3/2

{
2
√
ε

1− ε
−

[
2
√
ε

1− ε
− 1

6

(
2
√
ε

1− ε

)3

+O
(
ε5/2

)]}
, (P4.4)

where I have used the notation O(εp) to denote a quantity for which the limit

lim
ε→0

O(εp)

εp

is finite. Recalling that

1

1− ε
= 1 + ε+ ε2 + . . . = 1 +O(ε) , (P4.5)
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we can manipulate f(ε) to give

f(ε) =
1− ε
2ε3/2

{
1

6

(
2
√
ε

1− ε

)3

+O(ε5/2)

}

=
1− ε

2

{
1

6

(
2

1− ε

)3

+O(ε)

}

=

{
1

2
+O(ε)

}{
4

3
+O(ε)

}
=

2

3
+O(ε) .

(P4.6)

Thus,

lim
ε→0+

f(ε) =
2

3
. (P4.7)

PROBLEM 5: ISOTROPY ABOUT TWO POINTS IN EUCLIDEAN
SPACES (15 points extra credit)

The solution to this problem will appear with the solutions to Problem Set 5.


