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PROBLEM SET 7 SOLUTIONS

PROBLEM 1: GAS PRESSURE AND ENERGY CONSERVATION

(a) From Eqs. (P1.2) and (P1.3) of the problem statement one has

U = Vphysu = a3(t)Vcoordu(t) .

If the change described by Eq. (P1.1) happens over a time interval dt, then

dU = −pdV =⇒ dU

dt
= −pdV

dt
.

Remembering that Vcoord does not vary with time, and using the chain rule for the
differentiation of products of functions,

dU

dt
= Vcoord

d

dt

(
a3u
)

= Vcoord
d

dt

(
a3ρc2

)
and

dV

dt
= Vcoord

d

dt

(
a3
)
.

So

d

dt

(
a3ρc2

)
= −p d

dt

(
a3
)
.

Then, using the chain rule again,

3a2ȧρc2 + a3ρ̇c2 = −3pa2ȧ .

Dividing by a3c2 and rearranging,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

(b) We start by rewriting the Friedmann equation (Eq. (P1.6) of the problem statement),

ȧ2 =
8π

3
Gρa2 − kc2 .
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Differentiating with respect to time, we have

2ȧä =
8π

3
Gρ̇a2 +

16π

3
Gρaȧ .

Using the result of part (a) for ρ̇ and dividing by 2ȧ yields an equation for ä,

ä =
8π

3
G

[
−3

2
a
(
ρ+

p

c2

)]
+

8π

3
Gρa =⇒

ä = −4π

3
G

(
ρ+

3p

c2

)
a .

NOTE: Although we derived Eq. (P1.6) of the problem set in the context of Newto-

nian cosmology, the same equation holds exactly in the general relativistic treatment

of the same problem. The equation above for ä also holds exactly in general relativity.

(c) To make use of the result of part (a), it would be helpful to eliminate a in favor of

T . Using aT = const, note that

a =
const

T
=⇒ ȧ = −const

T 2
Ṫ = −aṪ

T
,

so Eq. (P1.5) becomes

ρ̇ = 3
Ṫ

T

(
ρ+

p

c2

)
.

Then using ρ = aT 4,

ρ̇ = 4aT 3Ṫ = 3
Ṫ

T

(
aT 4 +

p

c2

)
.

Solving for p gives

p =
1

3
aT 4c2 =

1

3
ρc2 .

Note that this is very different from ordinary non-relativistic gases. For the air in

this room, p ≈ 10−12ρc2.
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PROBLEM 2: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION

(a) This problem is answered most easily by starting from the cosmological formula
for energy conservation, which I remember most easily in the form motivated by
dU = −p dV . Using the fact that the energy density u is equal to ρc2, the energy
conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2a3

)
= −p d

dt

(
a3
)
.

Setting

ρ =
α

a6

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

a3

)
= −p d

dt

(
a3
)
,

which implies

−3
αc2

a4
da

dt
= −3pa2

da

dt
.

Thus

p =
αc2

a6
= ρc2 .

Alternatively, one may start from the equation for the time derivative of ρ,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Since ρ = α
a6 , we take the time derivative to find ρ̇ = −6(ȧ/a)ρ, and therefore

−6
ȧ

a
ρ = −3

ȧ

a

(
ρ+

p

c2

)
,

and therefore
p = ρc2.

(b) For a flat universe, the Friedmann equation reduces to(
ȧ

a

)2

=
8π

3
Gρ .
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Using ρ ∝ 1/a6, this implies that

ȧ =
β

a2
,

for some constant β. Rewriting this as

a2 da = β dt ,

we can integrate the equation to give

1

3
a3 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of the
time variable t. Using the standard big bang convention that a = 0 when t = 0, the
constant of integration vanishes. Thus,

a ∝ t1/3 .

The arbitrary constant of proportionality in this answer is consistent with the word-
ing of the problem, which states that “You should be able to determine the function
a(t) up to a constant factor.” Note that we could have expressed the constant of
proportionality in terms of the constant α that we used in part (a), but there would
not really be any point in doing that. The constant α was not a given variable. If the
comoving coordinates are measured in “notches,” then a is measured in meters per
notch, and the constant of proportionality in our answer can be changed by changing
the arbitrary definition of the notch.

(c) We start from the conservation of energy equation in the form

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Substituting ρ̇ = −n(ȧ/a)ρ and p = (1/2)ρc2, we have

−nHρ = −3H

(
3

2
ρ

)
and therefore

n =
9

2
.
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PROBLEM 3: TIME EVOLUTION OF A UNIVERSE WITH MYSTERI-
OUS STUFF (15 points)

(a) (4 points) The Friedmann equation in a flat universe is(
ȧ

a

)2

=
8πG

3
ρ.

Substituting ρ = const/a5 and taking the square root of both sides gives

ȧ

a
= αa−5/2 ,

for some constant α. Rearranging to a form we can integrate,

da a3/2 = αdt,

and therefore
2

5
a5/2 = αt.

Notice that once again we have eliminated the arbitrary integration constant by
choosing the Big Bang boundary conditions a = 0 at t = 0. Solving for a yields

a ∝ t2/5.

(b) (3 points) The Hubble parameter is, from its definition,

H =
ȧ

a
=

2

5t
,

where we have used the time dependence of a(t) that we found in part (a). (Notice
that we don’t need to know the constant of proportionality left undetermined in part
(a), as it cancels between numerator and denominator in this calculation.)

(c) (4 points) Recall that the horizon distance is the physical distance traveled by a light
ray since t = 0,

`p,horizon(t) = a(t)

∫ t

0

c dt′

a(t′)
.

Using a(t) ∝ t2/5, we find

`p,horizon(t) = ct2/5
∫ t

0

dt′ t′−2/5
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or

`p,horizon(t) = ct2/5
(

5

3
t3/5

)
=

5

3
ct.

(d) (4 points) Since we know the Hubble parameter, we can find the mass density ρ(t)

easily from the Friedmann equation,

ρ(t) =
3H2

8πG
.

Using the result from part (b), we find

ρ(t) =
3

50πG

1

t2
.

As a check on our algebra, since we found in (a) that a ∝ t2/5, and knew at the

beginning of the calculation that ρ ∝ a−5, we should find, as we do here, that

ρ ∝ t−2. Notice, however, that in this case we do not leave our answer in terms of

some undetermined constant of proportionality; the units of ρ are not arbitrary, and

therefore we care about its normalization.

PROBLEM 4: EFFECT OF AN EXTRA NEUTRINO SPECIES (15 points)

(a) The temperature vs. time relationship which holds during the radiation-dominated

era was derived in class:

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
,

or

t =

(
45h̄3c5

16π3gG

)1/2
1

(kT )
2 .

The quantity g receives a contribution of 2 from photons (two possible spin states),

7/2 from e+e− pairs (two spin states for e− plus two spin states for e+, times 7/8

for the Pauli exclusion principle) and 7/4 for each species of neutrino (one spin state

for ν plus one spin state for ν̄, times 7/8). With three species of massless neutrinos,
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g = 10 3
4 . So

t =

[
45×

(
1.055× 10−27 erg · s

)3 × (2.998× 1010 cm · s−1
)5

16π3 × (10.75)× (6.672× 10−8 cm3 · g−1 · s−2)

]1/2

× 1

(106 eV)
2 ×

(
1 eV

1.602× 10−12 erg

)2

= .740 s.

By using 1 erg = 1 g · cm2/s2, one can see that the units work out right.

Note that this result is only an approximation, since g = 10 3
4 is not correct for

kT > 100 MeV, so the total time for the universe to evolve from the instant of the
big bang to kT = 1 MeV would be influenced by the extra particles that contributed
to g before kT fell to 100 MeV. But the correction would be small, since the formula
above shows that t ∝ 1/T 2; thus only a fraction (1 MeV/100 MeV)2 = 10−4 of
our calculation is influenced by these extra particles. The extra particles at high
temperatures would cause the universe to evolve faster, so an upper limit on the
correction would be to reduce the time to reach kT = 100 MeV to zero, which would
reduce the answer to this question by one part in 104.

(b) With an additional neutrino species, g increases by 7/4 to 12.5. Thus, with four
neutrino species, the time it takes for the universe to cool to T = 1 MeV decreases
relative to the case of three neutrino species by a factor of(

12.5

10.75

)1/2

= 1.0783 .

One then has t = .686 s. With an extra neutrino species, the universe would evolve
faster — the extra mass acts to slow down the expansion faster.

(c) Under the standard assumptions, the energy density of matter in the universe is, at
temperature T ,

ρ = g
π2

30

(kT )4

h̄3c5
,

and g = 10.75. Plugging in numbers,

ρ = g
π2

30

(kT )4

h̄3c5
= (10.75)

π2

30

1024 eV4

(1.055× 10−27)
3

erg3 · s3

× 1

(2.998× 1010)
5

cm5 · s−5
×
(
1.602× 10−12

)4
erg4

1 eV4 × 1 g · cm2 · s−2

erg

= 8.19× 105 g/cm
3

= 8.19× 108 kg/m
3
.
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The only change to this calculation in the case of an extra neutrino species is that
we must now take g = 12.5. Then

ρ =
12.5

10.75
8.19× 105 g/cm

3
= 9.52× 105 g/cm

3
= 9.52× 108 kg/m

3
.

PROBLEM 5: ENTROPY AND THE BACKGROUND NEUTRINO TEM-
PERATURE (15 points)

The entropy density of black-body radiation is given by

s = g

[
2π2

45

k4

(h̄c)3

]
T 3

= g C T 3 ,

where C is a constant. The neutrinos are decoupled, so their entropy is conserved.
More precisely, the conserved quantity is Sν ≡ a3sν , which indicates the entropy per
cubic notch, i.e., entropy per unit comoving volume. We introduce the notation

Primed: after e+e− annihilation

Unprimed: before e+e− annihilation.

For the neutrinos,

S′ν = Sν =⇒ gνC (a′T ′ν)
3

= gνC (aTν)
3

=⇒

a′T ′ν = aTν .

For the photons,
Before e+e− annihilation,

Tγ = Te+e− = Tν ; gγ = 2, ge+e− = 7/2 .

When e+e− pairs annihilate, their entropy is added to photons.

S′γ = Se+e− + Sγ =⇒ 2C
(
a′T ′γ

)3
=

(
2 +

7

2

)
C (aTγ)

3
=⇒

a′T ′γ =

(
11

4

)1/3

aTγ ,
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so aTγ increases by a factor of (11/4)1/3.

Before e+e− annihilation the neutrinos were in thermal equilibrium with the photons,
so Tγ = Tν . By considering the two boxed equations above, one has

T ′ν =

(
4

11

)1/3

T ′γ .

PROBLEM 6: FREEZE-OUT OF MUONS (25 points)

(a) The factors contributing to g from the muons are the following:

2 since there are two particles, the muon and the antimuon

2 since there are two spin states for each particle

7

8
since the µ− and the µ+ are fermions

Thus

gµ+µ− = 2× 2× 7

8
=

7

2
.

(b) Besides the muons, the particles in thermal equilibrium when kT is just above 106
MeV are photons, neutrinos, and electron-positron pairs. As found in class

gγ = 2 (bosons, 2 spin states)

gν = 3︸︷︷︸
No. of species

× 2︸︷︷︸
Particle/antiparticle

× 7

8︸︷︷︸
Fermion factor

=
21

4
.

ge+e− = 2︸︷︷︸
Particle/antiparticle

× 2︸︷︷︸
Spin states

× 7

8︸︷︷︸
Fermion factor

=
7

2
.

So, for kT just above 106 MeV, g is the sum of all of these contributions:

g = gµ+µ− + gγ + gν + ge+e− =
57

4
= 14.25 .
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(c) We know that entropy is to a high degree of accuracy conserved as the universe

expands, although of course it is thinned by the expansion. The conservation of

entropy means that the entropy contained within any comoving volume does not

change. The entropy per comoving volume S is therefore constant, and can be

written as

S = a3(t) s(t) ,

where s(t) is the entropy density. The expression for the entropy density of black

body radiation is:

s = g
2π2

45

k4T 3

(h̄c)3
.

This formula describes the radiation of effectively massless particles, so it would not

be valid when kT ≈ 106 MeV, since for such temperatures the mass of the muons

cannot be neglected. We can apply this formula, however, when kT � 106 MeV,

when the muons are effectively massless, and we can also apply it when kT � 106

MeV, when the muons are essentially nonexistent; the power of conservation laws

then allows us to set the two expressions for S equal. So let t1 denote a time when

kT is well above 106 MeV (but below the threshold for producing other particles),

and let t2 denote a time when kT is well below 106 MeV (but well above 0.5 MeV,

when the electron-positron pairs will disappear). (Realistically the freeze-out of the

muons will overlap the freezing out of the pions, with mass/energies of 135-140 MeV,

but for the purpose of this problem we are ignoring the pions.)

The entropy per comoving volume is conserved, and by combining the two formulas

above it can be written

S = C × g(T )a3T 3 where C = constant.

Since S(t1) = S(t2), we find

C × g(t1)
[
a(t1)T (t1)

]3
= C × g(t2)

[
a(t2)T (t2)

]3
,

which implies that

(aT )|t2
(aT )|t1

=

[
g(t1)

g(t2)

]1/3
.

We found g(t1) in part (b): g(t1) = 14.25. After the muons disappear from the black

body radiation they no longer contribute to the g in the expression for the entropy,

so

g(t2) = gγ + gν + ge+e− = 2 +
21

4
+

7

2
=

43

4
= 10.75 .
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Using these values in the expression above we obtain the increase in aT due to the
annihilation of muon-antimuon pairs,

(aT )|t2 =

(
14.25

10.75

)1/3

(aT )|t1 =

(
57

43

)1/3

(aT )|t1 .

Evaluating the cube root, we have

(aT )|t2 ≈ (1.10) (aT )|t1 .


