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REVIEW PROBLEMS FOR QUIZ 3

QUIZ DATE: Thursday, April 13, 2000

COVERAGE: Lecture Notes 6; Lecture Notes 7; Problem Set 3; Michael Rowan-
Robinson, Cosmology (Third Edition), Chapters 4 and 5. One of the prob-
lems on the quiz will be taken verbatim (or at least almost verbatim)
from either the homework assignment, or from this set of Review
Problems.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They are all problems that I would consider fair
for the coming quiz. Since Rowan-Robinson’s book has not previously been
used as a text in 8.286, there are no review problems based on this reading.
You should expect, however, that the quiz will include a set of questions based
on this reading assignment.

INFORMATION TO BE GIVEN ON QUIZ:

The following material will be included on the quiz, so you need not memorize
it. You should, however, make sure that you understand what these formulas mean,
and how they can be applied.

DOPPLER SHIFT:

z = v/u (nonrelativistic, source moving)

z =
v/u

1 − v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1 − β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
R(tobserved)
R(temitted)

COSMOLOGICAL EVOLUTION:(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
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R̈ = −4π
3
G

(
ρ+

3p
c2

)
R

EVOLUTION OF A FLAT (Ω ≡ ρ/ρc = 1) UNIVERSE:

R(t) ∝ t2/3 (matter-dominated)

R(t) ∝ t1/2 (radiation-dominated)

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2

R̈ = −4π
3
GρR

ρ(t) =
R3(ti)
R3(t)

ρ(ti)

Closed (Ω > 1): ct = α(θ − sin θ) ,
R√
k

= α(1 − cos θ) ,

where α ≡ 4π
3
GρR3

k3/2c2

Open (Ω < 1): ct = α (sinh θ − θ)
R√
κ

= α (cosh θ − 1) ,

where α ≡ 4π
3
GρR3

κ3/2c2
,

κ ≡ −k .
ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ 2 = −
(

1 − 2GM
rc2

)
c2dt2 +

(
1 − 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,
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GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2

(∂igk`)
dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2

(∂µgλσ)
dxλ

dτ

dxσ

dτ

PHYSICAL CONSTANTS:

k = Boltzmann’s constant = 1.381 × 10−16 erg/K

= 8.617 × 10−5 eV/K ,

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

c = 2.998× 1010 cm/sec

1 eV = 1.602 × 10−12 erg .

BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p = −1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{

1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{

1 per spin state for bosons

3/4 per spin state for fermions ,
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and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV � kT � me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by
the Robertson-Walker formula:

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1 − r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more
convenient to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√

1 − r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0
for each segment of the trajectory. Consider a light pulse that moves along
a radial line, so θ = φ = constant. Find an expression for dψ/dt in terms of
quantities that appear in the metric.

(b) (8 points) Write an expression for the physical horizon distance `phys at time
t. You should leave your answer in the form of a definite integral.
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The form of R(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then R(t) is described by
the parametric equations

ct = α(θ − sin θ) ,

R = α(1 − cos θ) ,

where

α ≡ 4π
3
GρR3

c2
.

These equations are identical to those on the front of the exam, except that I have
chosen k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated
closed universe, as described by the equations above. Find an expression for
dψ/dθ, where θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system
(ψ = 0) at t = 0. How long will it take for the photon to return to its starting
place? Express your answer as a fraction of the full lifetime of the universe,
from big bang to big crunch.

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMENSIONAL
METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a
metric given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is
formed by starting at the origin, moving along the θ = 0 line to r = r0, then
moving at fixed r to θ = π/2, and then moving back to the origin at fixed θ. The
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path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.

PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so
the scale factor can be written simply as R, dropping its explicit t-dependence.

A small rod has one end at the point (r = a, θ = 0, φ = 0) and the other end
at the point (r = a, θ = ∆θ, φ = 0). Assume that ∆θ � 1.
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(a) Find the physical distance `p from the origin (r = 0) to the first end (a, 0, 0)
of the rod. You may find one of the following integrals useful:∫

dr√
1 − r2

= sin−1 r

∫
dr

1 − r2
=

1
2

ln
(

1 + r

1 − r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the
scale factor R, and the coordinates a and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write
an expression for this angle in terms of the physical distance `p, the physical
length sp, and the scale factor R.

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC (20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which
is spherically symmetric about a particular point, coordinates can be found so that
the metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies
between 0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified.
Given this metric, consider the sphere whose outer boundary is defined by r = r0.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical
length of a radial line which extends from the center to the boundary of the
sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include
the limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.
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PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
(20 points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = R2(t)
{

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may
leave your answer in the form of a radial integral which is not carried out. Be sure,
however, to clearly indicate the limits of integration.

PROBLEM 6: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric massM is described by the Schwarz-
schild metric, given at the front of the exam. Two observers, designated A and B,
are located along the same radial line, with values of the coordinate r given by rA
and rB , respectively, with rA < rB. You should assume that both observers lie
outside the Schwarzschild horizon.

a) (5 points) Write down the expression for the Schwarzschild horizon radius RSch,
expressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave
the answer to this part in the form of an integral that you do not evaluate—
but be sure to clearly indicate the limits of integration.

c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation
∆tA between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B
receives these pulses, and measures the time separation on his own clock. What
is the time interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static
black hole, so the Schwarzschild metric is valid for all r. Now suppose that one
considers the case in which observer A lies on the Schwarzschild horizon, so
rA ≡ RSch. Is the proper distance between A and B finite for this case? Does
the time interval of the pulses received by B, ∆τB, diverge in this case?
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PROBLEM 7: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordi-
nates by the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the para-
meter λ is the arc length measured along the curve. Use the general formula
on the front of the exam to obtain explicit differential equations which r(λ)
and θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.

PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD (30
points)

The following problem was Problem 2, Quiz 3, 1990:

In this problem we will consider the metric

ds2ST = − [c2 + 2φ(~x)
]
dt2 +

3∑
i=1

(
dxi
)2

,

which describes a static gravitational field. Here i runs from 1 to 3, with the
identifications x1 ≡ x, x2 ≡ y, and x3 ≡ z. The function φ(~x) depends only on the
spatial variables ~x ≡ (x1, x2, x3), and not on the time coordinate t.

(a) Suppose that a radio transmitter, located at ~xe, emits a series of evenly spaced
pulses. The pulses are separated by a proper time interval ∆Te, as measured
by a clock at the same location. What is the coordinate time interval ∆te
between the emission of the pulses? (I.e., ∆te is the difference between the
time coordinate t at the emission of one pulse and the time coordinate t at the
emission of the next pulse.)

(b) The pulses are received by an observer at ~xr, who measures the time of arrival
of each pulse. What is the coordinate time interval ∆tr between the reception
of successive pulses?
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(c) The observer uses his own clocks to measure the proper time interval ∆Tr
between the reception of successive pulses. Find this time interval, and also
the redshift z, defined by

1 + z =
∆Tr
∆Te

.

First compute an exact expression for z, and then expand the answer to lowest
order in φ(~x) to obtain a weak-field approximation. (This weak-field approxi-
mation is in fact highly accurate in all terrestrial and solar system applications.)

(d) A freely falling particle travels on a spacetime geodesic xµ(τ ), where τ is the
proper time. (I.e., τ is the time that would be measured by a clock moving
with the particle.) The trajectory is described by the geodesic equation

d

dτ

(
gµν

dxν

dτ

)
=

1
2

(∂µgλσ)
dxλ

dτ

dxσ

dτ
,

where the Greek indices (µ, ν, λ, σ, etc.) run from 0 to 3, and are summed over
when repeated. Calculate an explicit expression for

d2xi

dτ 2
,

valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dτ or
dxi/dτ in the answer.)

PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE

In this problem we will test the geodesic equation by computing the geodesic
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes
6, with metric given by

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
.

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized
by θ = π/2 and φ = ψ, where ψ is a parameter which runs from 0 to 2π.
Show that if the equator is rotated by an angle α about the x-axis, then the
equations become:

cos θ = sinψ sinα

tanφ = tanψ cosα .

(b) Using the generic form of the geodesic equation on the front of the exam, derive
the differential equation which describes geodesics in this space.

(c) Show that the expressions in (a) satisfy the differential equation for the geo-
desic. Hint: The algebra on this can be messy, but I found things were reason-
ably simple if I wrote the derivatives in the following way:

dθ

dψ
= − cosψ sinα√

1 − sin2 ψ sin2 α
,

dφ

dψ
=

cosα
1 − sin2 ψ sin2 α

.
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PROBLEM 10: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number
density of thermal neutrinos left over from the big bang?

PROBLEM 11: PROPERTIES OF BLACK-BODY RADIATION (25
points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the for-
mulas at the front of the exam. Since you were not asked to bring calculators, you
may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of pho-
tons at temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has
spin zero, so there is only one spin state. Would the average energy per particle
and entropy per particle be different from the answers you gave in parts (a)
and (b)? If so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These
particles are fermions with spin 1/2, and we will assume that they are massless
and have only one possible spin state. What is the average energy per particle
for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation
of neutrinos, as described in part (d)?

PROBLEM 12: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly
the same properties as an electron, except that its mass is given by mc2 = 0.750
MeV.

Parts (a)-(c) of this question require numerical answers, but since you were
not told to bring calculators, you need not carry out the arithmetic. Your answer
should be expressed, however, in “calculator-ready” form— that is, it should be an
expression involving pure numbers only (no units), with any necessary conversion
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factors included. (For example, if you were asked how many meters a light pulse in
vacuum travels in 5 minutes, you could express the answer as 2.998× 108 × 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per
cubic meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
value of the mass density at t = .01 sec? You may assume that 0.75 MeV �
kT � 100 MeV, so the particles contributing significantly to the black-body
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion
pairs. Express your answer in the units of gm-cm−3.

c) (5 points) Under the same assumptions as in (b), what would be the value of
kT , in MeV, at t = .01 sec?

The following part is not appropriate for Quiz 3 of this year (2000), as we have not
yet studied nucleosynthesis:

d) (5 points) When nucleosynthesis calculations are modified to include the effect
of the 8.286ion, is the production of helium increased or decreased? Explain
your answer in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT � 0.75 MeV. If the
8.286ions are included, what does one predict for the value of Tν/Tγ today?
(Here Tν denotes the temperature of the neutrinos, and Tγ denotes the tem-
perature of the cosmic background radiation photons.)

PROBLEM 13: FREEZE-OUT OF MUONS

The following problem was Problem 3, Quiz 3, 1990, where it was worth 30pts:

A particle called the muon seems to be essentially identical to the electron,
except that it is heavier— the mass/energy of a muon is 106 MeV, compared to
0.511 MeV for the electron. The muon (µ−) has the same charge as an electron,
denoted by −e. There is also an antimuon (µ+), analogous to the positron, with
charge +e. The muon and antimuon have the same spin as the electron. There is
no known particle with a mass between that of an electron and that of a muon.

(a) The black-body radiation formula, as shown at the front of this quiz, is written
in terms of a normalization constant g. What is the value of g for the muons,
taking µ+ and µ− together?

(b) When kT is just above 106 MeV as the universe cools, what particles besides
the muons are contained in the thermal radiation that fills the universe? What
is the contribution to g from each of these particles?

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium
radiation. At these temperatures all of the other particles in the black-body
radiation are interacting fast enough to maintain equilibrium, so the heat given
off from the muons is shared among all the other particles. Letting R denote the
Robertson-Walker scale factor, by what factor does the quantity RT increase
when the muons disappear?
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PROBLEM 14: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (20 points)

The following problem was Problem 3, Quiz 3, 1998.

A radiation-dominated universe behaves differently from a matter-dominated
universe because the pressure of the radiation is significant. In this problem we
explore the role of pressure for several fictitious forms of matter.

(a) (10 points) For the first fictitious form of matter, the mass density ρ decreases
as the scale factor R(t) grows, with the relation

ρ(t) ∝ 1
R5(t)

.

What is the pressure of this form of matter? [Hint: the answer is proportional
to the mass density.]

(b) (5 points) Find the behavior of the scale factor R(t) for a flat universe dom-
inated by the form of matter described in part (a). You should be able to
determine the function R(t) up to a constant factor.

(c) (5 points) Now consider a universe dominated by a different form of fictitious
matter, with a pressure given by

p =
1
6
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1
Rn(t)

.

Find the power n.
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SOLUTIONS

PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 +R2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

R2(t)
,

which implies that

dψ

dt
= ± c

R(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

R(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

`phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

R(t)dψ = R(t)
∫ t

0

c

R(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

R(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=
α

c
(1 − cos θ) .
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Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1 − cos θ)

R(t)
.

Then using R = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From R = α(1 − cos θ), one can see that R returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 6. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
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Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1 + ar)2 dr2, or ds = (1 + ar)dr.
Integrating, the length of the first segment is found to be

S1 =
∫ r0

0

(1 + ar)dr = r0 +
1
2
ar20 .

Along the second segment dr = 0, so ds = r(1 + br)dθ, where r = r0. So the
length of the second segment is

S2 =
∫ π/2

0

r0(1 + br0)dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length
is then

S = 2S1 + S2 = 2
(
r0 +

1
2
ar20

)
+
π

2
r0(1 + br0)

=
(
2 +

π

2

)
r0 +

1
2
(2a + πb)r20 .
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b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the
width of the strip is determined by the metric to be

dh = (1 + ar)dr .

The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then
dA = s(r)dh ,

so

A =
∫ r0

0

s(r)dh

=
∫ r0

0

π

2
r(1 + br)(1 + ar)dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3 ] dr

=
π

2

[
1
2
r20 +

1
3
(a+ b)r30 +

1
4
abr40

]
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (a, 0, 0), there is no variation in θ
or φ. So dθ = dφ = 0, and

ds =
Rdr√
1 − r2

.

So

`p =
∫ a

0

Rdr√
1 − r2

= R sin−1 a .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = Rr dθ ,

so

sp = Ra∆θ .

(c) From part (a), one has
a = sin(`p/R) .

Inserting this expression into the answer to (b), and then solving for ∆θ, one
has

∆θ =
sp

R sin(`p/R)
.

Note that as R→ ∞, this approaches the Euclidean result, ∆θ = sp/`p.

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends
from the center to the boundary of the sphere. The length of a path is just the
integral of ds, so

a =
∫

radial path from
origin to r0

ds .
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The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then
ds = dr. So

a =
∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ.
Then ds = ρ(r0)dθ. Similarly, a path obtained by varying only φ has length
ds = ρ(r0) sin θ dφ. Furthermore, these two paths are perpendicular to each
other, a fact that is incorporated into the metric by the absence of a dr dθ
term. Thus, the area of a small rectangle constructed from these two paths is
given by the product of their lengths, so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate
variables:

A = ρ2(r0)
∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)

=⇒ A = 4πρ2(r0) .

As a check, notice that if ρ(r) = r, then the metric becomes the metric of
Euclidean space, in spherical polar coordinates. In this case the answer above
becomes the well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 2 of Problem Set 3 (2000), we can imagine breaking up the
volume into spherical shells of infinitesimal thickness, with a given shell ex-
tending from r to r+dr. By the previous calculation, the area of such a shell is
A(r) = 4πρ2(r). (In the previous part we considered only the case r = r0, but
the same argument applies for any value of r.) The thickness of the shell is just
the path length ds of a radial path corresponding to the coordinate interval dr.
For radial paths the metric reduces to ds2 = dr2, so the thickness of the shell
is ds = dr. The volume of the shell is then

dV = 4πρ2(r)dr .
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The total volume is then obtained by integration:

V = 4π
∫ r0

0

ρ2(r)dr .

Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives
V = (4π/3)r30 , as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of
the two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√
σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )
[
dθ2 + sin2 θ dφ2

]
.

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal
changes in the coordinates r, θ and φ equals the differential volume element dV .
Therefore

dV = R(t)
dr√

1 − kr2
×R(t)rdθ ×R(t)r sin θdφ

The total volume is then

V =
∫
dV = R3(t)

∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1 − kr2

We can do the angular integrations immediately:

V = 4πR3(t)
∫ rmax

0

r2dr√
1 − kr2

.
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[Pedagogical Note: If you don’t see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:

The cell includes the volume lying between r and r+dr, between θ and θ+dθ,
and between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero,
the cell approaches a rectangular solid with sides of length:

ds1 = R(t)
dr√

1 − kr2

ds2 = R(t)r dθ

ds3 = R(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing
only one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation
relies on the orthogonality of the dr, dθ, and dφ directions; the orthogonality
is implied by the metric, which otherwise would contain cross terms such as
dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution√
k r = sinψ (if k > 0)

√−k r = sinhψ (if k > 0).
The answer is

V =




2πR3(t)


 sin−1

(√
k rmax

)
k3/2

−
√

1 − kr2max

k


 (if k > 0)

2πR3(t)

[√
1 − kr2max

(−k) − sinh−1
(√−k rmax

)
(−k)3/2

]
(if k < 0) .]
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PROBLEM 6: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes sin-
gular. Since the metric contains the factor

(
1 − 2GM

rc2

)
,

it becomes singular at

RSch =
2GM
c2

.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =
(

1 − 2GM
rc2

)−1

dr2 ,

so
ds =

dr√
1 − 2GM

rc2

.

The proper distance from A to B is obtained by adding the proper lengths of
all the segments along the path, so

sAB =
∫ rB

rA

dr√
1 − 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the
expression for the Schwarzschild radius to rewrite the expression for sAB as

sAB =
∫ rB

rA

√
r dr√

r −RSch

.

Then introduce the hyperbolic trigonometric substitution

r = RSch cosh2 u .

One then has √
r −RSch =

√
RSch sinhu
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dr = 2RSch coshu sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RSch

= 2RSch

∫
cosh2 u du

= RSch

∫
(1 + cosh 2u)du

= RSch

(
u+

1
2

sinh 2u
)

= RSch(u+ sinhu coshu)

= RSch sinh−1

(√
r

RSch
− 1

)
+
√
r(r −RSch) .

Thus,

sAB = RSch

[
sinh−1

(√
rB
RSch

− 1
)
− sinh−1

(√
rA
RSch

− 1
)]

+
√
rB(rB −RSch) −

√
rA(rA −RSch) .

c) A tick of the clock and the following tick are two events that differ only in their
time coordinates. Thus, the metric reduces to

−c2dτ 2 = −
(

1 − 2GM
rc2

)
c2dt2 ,

so

dτ =

√
1 − 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ ,
so the corresponding interval of the coordinate t is given by

∆tA =
∆τA√

1− 2GM
rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving
A will take the same length of time to reach B. Thus, the pulses emitted by A
will arrive at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√

1 − 2GM
rAc2

.
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The clock at B, however, will read the proper time and not the coordinate
time. Thus,

∆τB =

√
1 − 2GM

rBc2
∆tB

=

√√√√1 − 2GM
rBc2

1 − 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten
as

sAB =
∫ rB

RSch

√
rdr√

r −RSch

.

The potentially divergent part of the integral comes from the range of integra-
tion in the immediate vicinity of r = RSch, say RSch < r < RSch + ε. For this
range the quantity

√
r in the numerator can be approximated by

√
RSch, so

the contribution has the form

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

.

Changing the integration variable to u ≡ r − RSch, the contribution can be
easily evaluated:

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

=
√
RSch

∫ ε

0

du√
u

= 2
√
RSchε <∞ .

So, although the integrand is infinite at r = RSch, the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RSch,

The time interval ∆τB diverges.
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PROBLEM 7: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc
length along the curve, can be written as

d

dλ

{
gij
dxj

dλ

}
=

1
2

(∂igk`)
dxk

dλ

dx`

dλ
.

Here the indices j, k, and ` are summed from 1 to the dimension of the space, so
there is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1
2

(∂rgθθ)
dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1
2
(
∂rr

2
)(dθ

dλ

)2

,

or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j).
So

d

dλ

{
r2
dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving
along the curve, and expressing the coordinates as a function of the distance
traveled. (I am calling the locus y = 1 a curve rather than a line, since the
techniques that are used here are usually applied to curves. Since a line is a
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special case of a curve, there is nothing wrong with treating the line as a curve.)
In Cartesian coordinates, the curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent
any point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√
x2(λ) + y2(λ) =

√
λ2 + 1 ,

θ(λ) = tan−1 y(λ)
x(λ)

= tan−1(1/λ) .

Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)3/2
=

1

(λ2 + 1)3/2
=

1
r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1
λ2

= − 1
r2

.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1
r3

= r

(
− 1
r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2
dθ

dλ

}
= 0 ⇐⇒ d

dλ

{
r2
(
− 1
r2

)}
= 0 ,

which also checks.

* If you do not remember how to differentiate φ = tan−1(z), then you should
know how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =
(

cosφ
cosφ

+
sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1
1 + tan2 φ

=
1

1 + z2
.
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PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD

(a) ds2ST is the invariant separation between the event at (xi, t) and the event at
(xi + dxi, t + dt). Here xi and t are arbitrary coordinates that are connected
to measurements only through the metric. ds2ST is defined to equal

−c2dT 2 + d~r 2 ,

where d~r and dT denote the space and time separation as it would be mea-
sured by a freely falling observer. Taking the transmitter as the freely falling
observer* and taking the emission of two successive pulses as the two events,
one has

ds2ST = −c2(∆Te)2 .
To connect with the metric, note that the successive emissions have a separation
in the time coordinate of ∆te, and a separation of space coordinates dxi = 0.
So

ds2ST = − [c2 + 2φ(~xe)
]
(∆te)2 ,

and then
−c2(∆Te)2 = −[c2 + 2φ(~xe)](∆te)2 =⇒

∆te =
∆Te√

1 + 2φ(~xe)
c2

.

(b) Since the metric is independent of t, each pulse follows a trajectory identical
to the previous pulse, but delayed in t. Thus each pulse requires the same time
interval ∆t to travel from emitter to receiver, so the pulses arrive with the same
t-separation as they have at emission:

∆tr = ∆te .

(c) This is similar to part (a), but in this case we consider the two events cor-
responding to the reception of two successive pulses. ds2ST is related to the
physical measurement ∆Tr by

ds2ST = −c2(∆Tr)2 .

* The transmitter is not really a freely falling observer, but is presumably held
at rest in this coordinate system. Thus gravity is acting on the clock, and could in
principle affect its speed. It is standard, however, to assume that such effects are
negligible. That is, one assumes that the clock is ideal, meaning that it ticks at
the same rate as a freely falling clock that is instantaneously moving with the same
velocity.
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It is connected to the coordinate separation ∆tr through the metric, where
again we use the fact that the two events have zero separation in their space
coordinates— i.e., dxi = 0. So

ds2ST = −[c2 + 2φ(~xr)](∆tr)2 .

Then
−c2(∆Tr)2 = −[c2 + 2φ(~xr)](∆te)2 =⇒

∆Tr =

√
1 +

2φ(~xr)
c2

∆te .

We can cast this into a more useful form for the problem by using the solution
for ∆te found in part (c). This gives

∆Tr =



√

1 + 2φ(~xr)
c2√

1 + 2φ(~xe)
c2


∆Te .

Substitute this result for ∆Tr directly into the definition for Z to obtain the
exact expression for the redshift,

1 + Z =

√
1 + 2φ(~xr)

c2√
1 + 2φ(~xe)

c2

.

Remember that
√

1 + x ≈ 1+ 1
2x for small x. For weak fields, that is, for small

values of φ(~x), we can expand our result to lowest order in φ(~x). Expanding
the numerator we have √

1 +
2φ(~xr)
c2

≈ 1 +
φ(~xr)
c2

.

Similarly we find for
1√

1 + 2φ(~xe)
c2

≈ 1 − φ(~xe)
c2

.

Putting these approximations into our exact expression for 1 + Z we obtain

1 + Z ≈
(

1 +
φ(~xr)
c2

)(
1− φ(~xe)

c2

)
≈ 1 +

φ(~xr)
c2

− φ(~xe)
c2

,
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where we dropped terms in φ(~xe)φ(~xr). Finally,

Z ≈ φ(~xr) − φ(~xe)
c2

.

(d) For the metric at hand we know g00 = −[c2 + 2φ(~x)], gk0 = 0 and gik = gki =
δik. It is useful to notice that only g00 depends on ~x and thus ∂igkm = 0. The
geodesic equation corresponding to µ = i, where i runs from 1 to 3, is

d

dτ

(
gik

dxk

dτ

)
=

1
2
(∂igλσ)

dxλ

dτ

dxσ

dτ
=⇒

δik
d2xk

dτ 2
=

1
2
(∂ig00)

dx0

dτ

dx0

dτ
.

Using x0 ≡ t, δikyk = yi and

∂ig00 = −∂i(c2 + 2φ(~x)) = − 2
c2
∂iφ(~x)

we find

d2xi

d2τ
= −∂iφ(~x)

(
dt

dτ

)2

.

[Pedagogical Note: You might prefer to use the notation x0 ≡ ct, which is also a
very common choice. In that case the metric is rewritten as

ds2ST = −
[
1 +

2φ(~x)
c2

] (
dx0
)2

+
3∑
i=1

(
dxi
)2

,

so one takes g00 = − [1 + (2φ(~x)/c2)
]
. In the end one finds the same answer

as the boxed equation above.

Note also that when φ is small and velocities are nonrelativistic, then
dt/dτ ≈ 1. Thus one has d2xi/d2t ≈ −∂iφ(~x), so φ(~x) can be identified with
the Newtonian gravitational potential. In the context of general relativity,
Newtonian gravity is a distortion of the metric in the time-direction.]
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PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE

(a) Rotations are easy to understand in Cartesian coordinates. The relationship
between the polar and Cartesian coordinates is given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The equator is then described by θ = π/2, and φ = ψ, where ψ is a parameter
running from 0 to 2π. Thus, the equator is described by the curve xi(ψ), where

x1 = x = r cosψ

x2 = y = r sinψ

x3 = z = 0 .

Now introduce a primed coordinate system that is related to the original system
by a rotation in the y-z plane by an angle α:

x = x′

y = y′ cosα− z′ sinα

z = z′ cosα+ y′ sinα .
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The rotated equator, which we seek to describe, is just the standard equator
in the primed coordinates:

x′ = r cosψ , y′ = r sinψ , z′ = 0 .

Using the relation between the two coordinate systems given above,

x = r cosψ

y = r sinψ cosα

z = r sinψ sinα .

Using again the relations between polar and Cartesian coordinates,

cos θ =
z

r
= sinψ sinα

tanφ =
y

x
= tanψ cosα .

(b) A segment of the equator corresponding to an interval dψ has length adψ, so
the parameter ψ is proportional to the arc length. Expressed in terms of the
metric, this relationship becomes

ds2 = gij
dxi

dψ

dxj

dψ
dψ2 = a2dψ2 .

Thus the quantity

A ≡ gij
dxi

dψ

dxj

dψ

is equal to a2, so the geodesic equation (6.36) reduces to the simpler form of
Eq. (6.38). (Note that we are following the notation of Lecture Notes 6, except
that the variable used to parametrize the path is called ψ, rather than λ or s.
Although A is not equal to 1 as we assumed in Lecture Notes 6, it is easily seen
that Eq. (6.38) follows from (6.36) provided only that A = constant.) Thus,

d

dψ

{
gij

dxj

dψ

}
=

1
2

(∂igk`)
dxk

dψ

dx`

dψ
.

For this problem the metric has only two nonzero components:

gθθ = a2 , gφφ = a2 sin2 θ .
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Taking i = θ in the geodesic equation,

d

dψ

{
gθθ

dθ

dψ

}
=

1
2
∂θgφφ

dφ

dψ

dφ

dψ
=⇒

d2θ

dψ2
= sin θ cos θ

(
dφ

dψ

)2

.

Taking i = φ,
d

dψ

{
a2 sin2 θ

dφ

dψ

}
= 0 =⇒

d

dψ

{
sin2 θ

dφ

dψ

}
= 0 .

(c) This part is mainly algebra. Taking the derivative of

cos θ = sinψ sinα

implies
− sin θ dθ = cosψ sinα dψ .

Then, using the trigonometric identity sin θ =
√

1 − cos2 θ, one finds

sin θ =
√

1 − sin2 ψ sin2 α ,

so
dθ

dψ
= − cosψ sinα√

1 − sin2 ψ sin2 α
.

Similarly

tanφ = tanψ cosα =⇒ sec2 φdφ = sec2 ψ dψ cosα .

Then
sec2 φ = tan2 φ+ 1 = tan2 ψ cos2 α + 1

=
1

cos2 ψ
[sin2 ψ cos2 α+ cos2 ψ]

= sec2 ψ[sin2 ψ(1 − sin2 α) + cos2 ψ]

= sec2 ψ[1 − sin2 ψ sin2 α] ,
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So
dφ

dψ
=

cosα
1 − sin2 ψ sin2 α

.

To verify the geodesic equations of part (b), it is easiest to check the second
one first:

sin2 θ
dφ

dψ
= (1 − sin2 ψ sin2 α)

cosα
1 − sin2 ψ sin2 α

= cosα ,

so clearly
d

dψ

{
sin2 θ

dφ

dψ

}
=

d

dψ
(cosα) = 0 .

To verify the first geodesic equation from part (b), first calculate the left-hand
side, d2θ/dψ2, using our result for dθ/dψ:

d2θ

dψ2
=

d

dψ

(
dθ

dψ

)
=

d

dψ

{
− cosψ sinα√

1− sin2 ψ sin2 α

}
.

After some straightforward algebra, one finds

d2θ

dψ2
=

sinψ sinα cos2 α[
1 − sin2 ψ sin2 α

]3/2 .

The right-hand side of the first geodesic equation can be evaluated using the
expression found above for dφ/dψ, giving

sin θ cos θ
(
dφ

dψ

)2

=
√

1 − sin2 ψ sin2 α sinψ sinα
cos2 α[

1 − sin2 ψ sin2 α
]2

=
sinψ sinα cos2 α[

1 − sin2 ψ sin2 α
]3/2 .

So the left- and right-hand sides are equal.

PROBLEM 10: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given
by

n = g∗
ξ(3)
π2

(
kT

h̄c

)3
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For photons, one has g∗ = 2. Then

k = 1.381 × 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055 × 10−27erg-sec

c = 2.998 × 1010cm/sec




=⇒
(
kT

h̄c

)3

= 1.638 × 103cm−3 .

Then using ξ(3) ' 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2 × 3
4

=
3
2

per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the
Pauli exclusion principle. So for three species of neutrinos one has

g∗ν =
9
2
.

Using the result

T 3
ν =

4
11
T 3
γ

from Problem 8 of Problem Set 3 (2000), one finds

nν =
(
g∗ν
g∗γ

)(
Tν
Tγ

)3

nγ

=
(

9
4

)(
4
11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).
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PROBLEM 11: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to
know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzman constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, SPRING 2000 p. 36

number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy

per particle is unaffected — the energy density and the total number density

are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.

This result can be understood as a natural consequence of the fact that fermions

must obey the exclusion principle, while bosons do not. Large numbers of

bosons can therefore collect in the lowest energy levels. In fermion systems,

on the other hand, the low-lying levels can accommodate at most one particle,

and then additional particles are forced to higher energy levels.
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(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8

2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 12: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So

Then

Answer = 3
ζ(3)
π2

×
(

3 × 106 × 102

6.582 × 10−16 × 2.998 × 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
Ṙ

R

)2

=
8π
3
Gρ .

During the radiation-dominated era R(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

Ṙ

R
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732 × 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4 × 7
8 = 3 1

2

νe, νµ, ντ : g = 6 × 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4 × 7
8 = 3 1

2
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gtot = 14
1
4
.

Solving for kT in terms of ρ gives

kT =
[

30
π2

1
gtot

h̄3c5ρ

]1/4
.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90 × (1.055× 10−27)3 × (2.998 × 1010)5

14.24 × 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1
1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/R. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)R3(t)
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where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γR

3(t) = grestT
3(t)R3(t) .

So,
Tγ
T (t)

=
(
grest
gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν
Tγ

=
(

2
9

)1/3

.

PROBLEM 13: FREEZE-OUT OF MUONS

(a) The factors contributing to g from the muons are the following:

2 since there are two particles, the muon and the antimuon

2 since there are two spin states for each particle

7
8

since the µ− and the µ+ are fermions

Thus

gµ = 2 × 2 × 7
8

=
7
2
.

(b) Besides the muons, the particles in thermal equilibrium when kT is just above
106 MeV are photons, neutrinos and electrons. As found in class

gγ = 2

gν = 3 × 2 × 7
8

=
21
4

ge− = 2 × 2 × 7
8

=
7
2
.
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So, for kT just above 106 MeV, g is the sum of all of these contributions:

g = gµ + gγ + gν + ge− =
57
4

= 14.25 .

(c) We know that entropy S is conserved and that it can be written as S = R3 × s

where s is the entropy density. The expression for the entropy density is given
on the cover of the exam. It is

s = g
2π2

45
k4T 3

(h̄c)3
.

Therefore S = R3 × s is given by

S = C × g(T )R3T 3 where C = constant.

Let Ta denote the temperature of the universe when kTa is just above 106 MeV.
Let Tb denote the temperature of the universe when kTb is just below 106 MeV.
Since the entropy is constant S(Ta) = S(Tb). Using the above expression for S
we find

C × g(Ta)(RTa)3 = C × g(Tb)(RTb)3 =⇒

RTb
RTa

=
[
g(Ta)
g(Tb)

]1/3
.

We found g(Ta) in part (b), g(Ta) = 14.25. After the muons disappear from
the black body radiation they no longer contribute to the g in the expression
for the entropy. Thus at temperatures below Tb, g(Tb) = gγ + gν + ge− =
2 + 21

4 + 7
2 = 43

4 = 10.75. Using these values in the expression above we obtain
the increase in RT ,

RTb =
(

14.25
10.75

)1/3

RTa =
(

57
43

)1/3

RTa =⇒

RTb ≈ (1.10)RTa .
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PROBLEM 14: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION

(a) This problem is answered most easily by starting from the cosmological formula
for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the
energy conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2R3

)
= −p d

dt

(
R3
)
. (1)

Setting
ρ =

α

R5
(2)

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

R2

)
= −p d

dt

(
R3
)
,

which implies

−2
αc2

R3

dR

dt
= −3pR2 dR

dt
.

Thus

p =
2
3
αc2

R5
=

2
3
ρc2 .

For those students who could not reconstruct Eq. (1) or some equivalent equa-
tion from memory, the conservation of energy equation could be derived from
the formulas for cosmological evolution on the front of the exam:

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
(3)

R̈ = −4π
3
G

(
ρ+

3p
c2

)
R . (4)

By rewriting Eq. (3) as

Ṙ2 =
8π
3
GρR2 − kc2 ,

the time derivative becomes

2Ṙ R̈ =
8π
3
Gρ̇R2 +

16π
3
GρRṘ .
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This equation can be solved for ρ̇ to give

ρ̇ =
3

4πG
Ṙ R̈

R2
− 2

Ṙ

R
ρ .

Using Eq. (4) to replace R̈, one finds

ρ̇ = − Ṙ
R

(
ρ+

3p
c2

)
− 2

Ṙ

R
ρ = −3

Ṙ

R

(
ρ+

p

c2

)
. (5)

It is easy to show that Eq. (5) is equivalent to Eq. (1), but it is not necessary
to do so. The question can be answered directly from Eq. (5), by substituting
Eq. (2) and manipulating.

(b) For a flat universe, Eq. (3) reduces to

(
Ṙ

R

)2

=
8π
3
Gρ .

Using Eq. (2), this implies that

Ṙ =
β

R3/2
,

for some constant β. Rewriting this as

R3/2 dR = β dt ,

we can integrate the equation to give

2
5
R5/2 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of
the time variable t. Using the standard big bang convention that R = 0 when
t = 0, the constant of integration vanishes. Thus,

R ∝ t2/5 . (6)

The arbitrary constant of proportionality in Eq. (6) is consistent with the
wording of the problem, which states that “You should be able to determine
the function R(t) up to a constant factor.” Note that we could have expressed
the constant of proportionality in terms of the constant α in Eq. (2), but there
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would not really be any point in doing that. The constant α was not a given
variable. If the comoving coordinates are measured in “notches,” then R is
measured in meters per notch, and the constant of proportionality in Eq. (6)
can be changed by changing the arbitrary definition of the notch.

(c) Combining Eq. (1) with p = 1
6ρc

2, one has

d

dt

(
ρc2R3

)
= −1

6
ρc2

d

dt

(
R3
)
,

or equivalently
d

dt

(
ρR3

)
+

1
6
ρ
d

dt

(
R3
)

= 0 . (7)

There are various ways to proceed from here. Since the problem told us that

ρ =
const
Rn

,

the most straightforward approach would be to use this expression to replace
ρ in Eq. (7), and then solve the equation for n. A cleverer approach would be
to multiply Eq. (7) by R1/2, and then rewrite it as

d

dt

(
ρR7/2

)
= 0 ,

from which one can see immediately that

ρ(t) ∝ 1
R7/2(t)

,

and therefore

n = 7/2 .


