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PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) The correct answer, of course, is (iv). The other items are supposed to be
plausible-sounding but flawed explanations. See Rowan-Robinson section 6.4,
pages 102-3.

(b) The key fact is that they have a critical value for the cosmological constant,
leading to an asymptotic period of near-static evolution. Technically one as-
ymptotes to the Einstein static model at infinite negative time and then ex-
pands (this has no Big Bang), and the other asymptotes to the Einstein case
at infinite positive time after a Big Bang and initial period of expansion. See
Rowan-Robinson section 8.2, pages 133-4.

(c) The correct answer is, of course, (ii). Answer (i) is intended to be evil and
tricky, but the others are merely wrong, and (v) is just a joke to compensate
for confusing the students with (i). See Rowan-Robinson section 6.1, pages
97-9.

(d) This is a total trick question. Lepton number is, of course, conserved, so the
factor is just 1. See Weinberg chapter 4, pages 91-4.

(e) The correct answer is (i). The others are all real reasons why it’s hard to
measure, although Weinberg’s book emphasizes reason (v) a bit more than
modern astrophysicists do: astrophysicists have been looking for other ways
that deuterium might be produced, but no significant mechanism has been
found. See Weinberg chapter 5, pages 114-7.

(f) The most obvious answers would be proton, neutron, and pi meson. However,
any of the particles listed as baryons or mesons in Lecture Notes 11 would be
correct. See Weinberg chapter 7, pages 136-8.

PROBLEM 2: TIME SCALES IN COSMOLOGY (20 points)

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”,
so that free neutron decay becomes the only mechanism that can interchange
protons and neutrons. From this time onward, the relative number of protons
and neutrons is no longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions
are no longer initiated.]



8.286 QUIZ 4 SOLUTIONS, SPRING 2000 p. 2

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1
sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times
higher. In the radiation-dominated era T ∝ R−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as
200,000 years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 3: NEUTRON-PROTON RATIO AND BIG-BANG NU-
CLEOSYNTHESIS (20 points)

(a) In thermal equilibrium, the ratio of neutrons to protons is given by a Boltzmann
factor,

nn

np
= e−∆m c2/kT ,

where ∆m = (mn−mp). For ∆mc2 = 1.293×106 eV, k = 8.617×10−5 eV/K,
and T = 5× 1010 K, this gives

nn

np
= exp

{−1.293× 106/(8.617× 10−5 × 5× 1010)
}
= 0.741 .

Caveat (for stat mech experts): The above formula would be a precise con-
sequence of statistical mechanics if the neutron and proton were two possible
energy levels of the same system. In this case one would describe the system
using the canonical ensemble, which implies that the probability of the system
existing in any specific state i is proportional to exp(−Ei/kT ), where Ei is the
energy of the state. However, the neutron and proton are not really different
energy levels of the same system, because the conversion between neutrons and
protons involves other particles as well; a sample conversion reaction would be

n + νe ←→ p + e− ,

where νe is the electron neutrino, and e− is the electron. This means that
if the universe contained a very large density of electron neutrinos, then n-
νe collisions would occur more frequently, and the reaction would be driven
in the forward direction. Thus, a large density of electron neutrinos would
lead to a lower ratio of neutrons to protons than the Boltzmann factor given
above. Similarly, if the universe contained a large density of electrons, then
the reaction would be driven in the reverse direction, and the ratio of neutrons
to protons would be higher than the Boltzmann factor. A complete statistical
mechanical treatment of this situation would use the grand canonical ensemble,
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which describes systems in which the number of particles of a given type can
change by chemical reactions. In this formalism the density of each type of
particle is related to a quantity called the chemical potential µ, where in general
the relationship is given by

n =
g

2π2

∫ ∞

m

(E2 −m2)1/2

exp [(E − µ)/(kT )] ± 1
E dE

where the + sign holds for Fermi particles, the − sign holds for Bose particles,
and the factor g has the same meaning as in Lecture Notes 7. The ratio of
neutrons to protons is then given by

nn

np
= e−(∆m c2+µν−µe)/kT ,

where µν and µe represent the chemical potentials for electron neutrinos and
electrons, respectively. In the early universe, however, the standard theories
imply that the chemical potentials for electrons and neutrinos were both neg-
ligible.

(b) A larger ∆m would mean that the Boltzmann factor described in the previous
answer would be smaller, so that there would be fewer neutrons at any given
temperature. Fewer neutrons implies less helium, since essentially all the neu-
trons that exist when the temperature falls enough for deuterium to become
stable become bound into helium.

(c) There are at least four effects that occur when the electron mass/energy is
taken as 1 KeV instead of 0.511 MeV. When I graded the problem, I gave full
credit to any student who accurately described any one of the following:

(i) For the real mass/energy of 0.511 MeV the electron-positron pairs freeze
out before nucleosynthesis, but a mass/energy of 1 KeV would mean that
electron-positron pairs would behave as massless particles throughout the
nucleosynthesis process. Just like adding an extra species of neutrino, this
additional massless particle would mean that the expansion rate would be
larger, since for a flat universe,

H2 =
8π
3

Gρ ,

and

ρ =
u

c2
= g

π2

30
(kT )4

h̄3c5
.

Faster expansion means that the weak interactions “freeze out” earlier,
since the freeze-out point is the time at which the interactions can no longer
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maintain equilibrium as the universe expands. An earlier freeze-out means
a higher temperature of freeze-out and hence more neutrons at the time
of freeze-out. In addition, the faster expansion rate means faster cooling,
which means less time before the temperature of nucleosynthesis is reached,
and therefore less time for neutrons to decay. Thus, faster expansion
means more neutrons. Since essentially all the neutrons present when the
deuterium bottleneck breaks are collected into helium, this implies more
helium.

(ii) The most important reactions that keep protons and neutrons in thermal
equilibrium all involve electrons and positrons:

n + e+ ←→ p + ν̄e

n + νe ←→ p + e− .

If the electron-positron mass/energy were smaller, then the rates of all of
these reactions would be enhanced. The reactions in which an e+ or e−

appears in the initial state will be enhanced by the presence of more e+’s
and e−’s, and the reactions in which they appear in the final state will be
enhanced because a lighter final state is easier to produce. The enhanced
rate for these reactions will keep neutrons and protons in thermal equi-
librium longer, and hence to lower temperatures, and this would decrease
the final abundance of neutrons. Thus this effect will go in the opposite
direction as effect (i), leading to the production of less helium.

(iii) If the electron mass is decreased, then the neutron decay

n −→ p + e− + ν̄e

becomes more exothermic, so it will happen more quickly. Thus more
neutrons can decay, leading to less helium.

(iv) As mentioned in (i), lowering the mass/energy of electron-positron pairs
to 1 KeV would mean that their freeze-out would not occur until after
nucleosynthesis is over. In the real case, however, with mec

2 = 0.511 MeV,
the electron-positron pairs start to freeze out at t ≈ 10 sec. The energy
released by this freeze-out heats the photons, protons, and neutrons, and
this extra heat delays the time when the universe cools enough to break the
deuterium bottleneck so that helium production can proceed. The delay
allows more time for the neutrons to decay, resulting in less helium. Since
the freeze-out that occurs for mec

2 = 0.511 MeV results in less helium, the
absence of this freeze-out if mec

2 = 1 KeV would result in more helium.

Since the effects point in different directions, there is no easy way to know what
the net effect will be. I (AHG) tried carrying out a full numerical integration,
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using the equations from P.J.E. Peebles, “Primordial helium abundance and
the primordial fireball II,” Astrophysical Journal 146, 542-552 (1966). I found
that the net effect of changing mec

2 to 1 KeV was to produce less helium.
Apparently effects (ii) and (iii) above are the most significant. Of course I did
not expect students to figure this out during the exam!

(d) Part (a) asked for the ratio of neutrons to protons, so its answer is

A =
nneutron

nproton
.

The fraction of the baryonic mass in neutrons is then

nneutron

nB
=

nneutron

nneutron + nproton
=

nneutron
nproton

nneutron
nproton

+ 1
=

A

1 + A
.

The fraction of the baryonic mass in helium is twice this number, since after
nucleosynthesis essentially all neutrons are in helium, and the mass of each
helium nucleus is twice the mass of the neutrons within it. Thus

Y =
2A

1 + A
.

This gives Y = 0.851.

PROBLEM 4: INFLATION AND THE HORIZON PROBLEM (30
points)

(a) As described in Lecture Notes 10, the photons of the cosmic background ra-
diation have a uniform temperature (and hence energy) to an accuracy of
about one part in 105. (In addition, the motion of the earth through the cos-
mic background radiation produces an anisotropy of about one part in 103, but
this is not really an anisotropy of the radiation itself.)

(b) Again, as described in Lecture Notes 10, the number is about 90.

(c) In an inflationary model, at very early times the region from which the observed
universe evolves can be much smaller than in conventional cosmology. The
uniformity can be established before inflation, when the region was incredibly
small. Then inflation can expand this tiny region to become large enough to
easily encompass everything that we see.

(d) To estimate the time tGUT at which kT was equal to MGUT, we use the formula
from the front of the exam for a flat radiation-dominated universe:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

.
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For a typical grand unified theory, we will use gGUT ≈ 100 (as stated in Lecture
Notes 12). So

tGUT ≈ 1
M2

GUT

√
45h̄3c5

16π3gGUTG
.

Numerically,

tGUT ≈

1

(1025 eV)2

√
45 · (6.582× 10−16 eV · s)3 · (2.998× 1010 cm · s−1)5

16π3 · 100 · 5.573× 10−8 cm3 · g−1 · s−2

×
√

1 eV
1.602× 10−12erg

1 erg
g · cm2 · s−2

= 2.42× 10−39 s .

For a radiation-dominated universe the physical horizon length �hor is 2ct, so

�hor(tGUT) = 2ctGUT

≈ 2 · 2.998× 1010 cm · s−1 · 2.42× 10−39 s

= 1.45× 10−28 cm .

We are asked to compare the horizon length �hor(tGUT) with the diameter
at that time of the region that will evolve to become the presently observed
universe. The radius of the presently observed universe is about equal to the
horizon distance calculated for a matter-dominated universe,

�hor(t0) ≈ 3ct0 .

At tGUT, the diameter of this region was

d(tGUT) ≈ 6ct0
R(tGUT)

R(t0)
.

To determine this ration of scale factors, one can use the fact that entropy is
roughly conserved between tGUT and the present. (It is this statement that
would be radically changed in an inflationary model, in which a huge amount
of entropy is produced by the reheating at the end of the period of inflation.)
Since entropy density s is proportional to gT 3, and conservation of entropy
implies that R3s = const, one has

R3(tGUT)gGUTT 3
GUT ≈ R3(t0)g0T

3
0 .
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Here g0 is the present value of g, which we will take to be about equal to 10.
Then

d(tGUT) ≈ 6ct0

(
g0

gGUT

)1/3
T0

TGUT
= 6ct0

(
g0

gGUT

)1/3
kT0

MGUT
.

Numerically,

d(tGUT) ≈ 6 · (2.998× 1010 cm · s−1) · (1.5× 1010 yr)

× (3.156× 107 s · yr−1) ·
(

10
100

)1/3

× (8.617× 10−5 eV ·K−1) · 2.7 K
1025 eV

≈ 0.920 cm .

Finally, the ratio is given by

d(tGUT)
�hor(tGUT)

≈ 0.920 cm
1.45× 10−28 cm

≈ 6.34× 1027 ∼ 1028 .

That is, at the time when kT was equal to TGUT, the diameter of the region
that will evolve to become the presently observed universe was about 1028 times
larger than the horizon length at that time.


