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QUIZ 1 SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) The radio emission from the Milky Way is primarily produced by cosmic ray
electrons spiralling in the Galaxy’s magnetic field.

(b) The Hertzsprung-Russell diagram, on which stars burning hydrogen like our
sun lie on a line called the main sequence, is a plot of the luminosity of a
star against color or (surface) temperature.

(c) The oldest stars in our galaxy lie in globular clusters.

(d) Newton proposed that one could test whether or not stars are distributed with
uniform number density throughout the universe by counting the number of
stars as a function of their observed flux.

(e) Cosmologists now believe that the universe today is dominated by “dark en-
ergy” (i.e., energy density of the vacuum, or some form of peculiar matter that
behaves very similarly).

(f) The horizontal (wavelength) axis of the graph of the spectrum of the cosmic
background radiation from Weinberg’s book is calibrated in centimeters. The
peak is at about 0.2 cm.

(g) The curve falls off at long wavelengths because it is hard to fit radiation into
any volume whose dimensions are smaller than the wavelength.

(h) The curve falls off at short wavelengths because the energy of any photon is
inversely proportional to the wavelength, so at a given temperature there will
not be enough energy to produce many photons of very short wavelength.

PROBLEM 2: ANOTHER FLAT UNIVERSE WITH AN UNUSUAL
TIME EVOLUTION (40 points)

a) (5 points) The cosmological redshift is given by the usual form,

1 + z =
R(t0)
R(te)

.

For light emitted by an object at time te, the redshift of the received light is

1 + z =
R(t0)
R(te)

=
(

t0
te

)γ

.
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So,

z =
(

t0
te

)γ

− 1 .

b) (5 points) The coordinates t0 and te are cosmic time coordinates. The “look-
back” time as defined in the exam is then the interval t0 − te. We can write
this as

t0 − te = t0

(
1− te

t0

)
.

We can use the result of part (a) to eliminate te/t0 in favor of z. From (a),

te
t0

= (1 + z)−1/γ .

Therefore,

t0 − te = t0

[
1− (1 + z)−1/γ

]
.

c) (10 points) The present value of the physical distance to the object, �p(t0), is
found from

�p(t0) = R(t0)
∫ t0

te

c

R(t)
dt .

Calculating this integral gives

�p(t0) =
ctγ0

1− γ

[
1

tγ−1
0

− 1
tγ−1
e

]
.

Factoring tγ−1
0 out of the parentheses gives

�p(t0) =
ct0

1− γ

[
1−

(
t0
te

)γ−1
]

.

This can be rewritten in terms of z and H0 using the result of part (a) as well
as,

H0 =
Ṙ(t0)
R(t0)

=
γ

t0
.
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Finally then,

�p(t0) = cH−1
0

γ

1− γ

[
1− (1 + z)

γ−1
γ

]
.

d) (10 points) A nearly identical problem was worked through in Problem 8 of
Problem Set 1.

The energy of the observed photons will be redshifted by a factor of (1+z). In
addition the rate of arrival of photons will be redshifted relative to the rate of
photon emmission, reducing the flux by another factor of (1+z). Consequently,
the observed power will be redshifted by two factors of (1 + z) to P/(1 + z)2.

Imagine a hypothetical sphere in comoving coordinates as drawn above, cen-
tered on the radiating object, with radius equal to the comoving distance �c.
Now consider the photons passing through a patch of the sphere with physical
area A. In comoving coordinates the present area of the patch is A/R(t0)2.
Since the object radiates uniformly in all directions, the patch will intercept a
fraction (A/R(t0)2)/(4π�2

c) of the photons passing through the sphere. Thus
the power hitting the area A is

(A/R(t0)2)
4π�2

c

P

(1 + z)2
.

The radiation energy flux J , which is the received power per area, reaching the
earth is then given by

J =
1

4π�p(t0)2
P

(1 + z)2
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where we used �p(t0) = R(t0)�c. Using the result of part (c) to write J in terms
of P,H0 , z, and γ gives,

J =
H2

0

4πc2

(
1− γ

γ

)2
P

(1 + z)2
[
1− (1 + z)

γ−1
γ

]2 .

e) (10 points) Following the solution of Problem 1 of Problem Set 1, we can
introduce a fictitious relay station that is at rest relative to the galaxy, but
located just next to the jet, between the jet and Earth. As in the previous
solution, the relay station simply rebroadcasts the signal it receives from the
source, at exactly the instant that it receives it. The relay station therefore
has no effect on the signal received by the observer, but allows us to divide the
problem into two simple parts.

The distance between the jet and the relay station is very short compared to
cosmological scales, so the effect of the expansion of the universe is negligible.
For this part of the problem we can use special relativity, which says that the
period with which the relay station measures the received radiation is given by

∆trelay station =

√
1− v

c

1 + v
c

×∆tsource .

Note that I have used the formula from the front of the exam, but I have
changed the size of v, since the source in this case is moving toward the relay
station, so the light is blue-shifted. To observers on Earth, the relay station is
just a source at rest in the comoving coordinate system, so

∆tobserved = (1 + z)∆trelay station .

Thus,

1 + zJ ≡ ∆tobserved

∆tsource
=

∆tobserved

∆trelay station

∆trelay station

∆tsource

= (1 + z)|cosmological × (1 + z)|special relativity

= (1 + z)

√
1− v

c

1 + v
c

.

Thus,

zJ = (1 + z)

√
1− v

c

1 + v
c

− 1 .
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Note added: In looking over the solutions to this problem, I found that a sub-
stantial number of students wrote solutions based on the incorrect assumption
that the Doppler shift could be treated as if it were entirely due to motion.
These students used the special relativity Doppler shift formula to convert
the redshift z of the galaxy to a velocity of recession, then subtracted from
this the speed v of the jet, and then again used the special relativity Doppler
shift formula to find the Doppler shift corresponding to this composite velocity.
However, as discussed at the end of Lecture Notes 3, the cosmological Doppler
shift is given by

1 + z ≡ ∆to
∆te

=
R(to)
R(te)

, (3.11)

and is not purely an effect caused by motion. It is really the combined effect
of the motion of the distant galaxies and the gravitational field that exists
between the galaxies, so the special relativity formula relating z to v does not
apply.

PROBLEM 3: PARTICLE TRAJECTORIES IN NEWTONIAN
COSMOLOGY (35 points)

(a) (10 points) The particle will feel the gravitational field of all those particles
in the model universe whose radius is less than |�rA|. (The spherical shell of
matter outside of radius |�rA| does not create any gravitational field inside the
shell.) The total mass enclosed within a radius |�rA| at time t is given by

M =
4π
3

|�rA|3 ρ(t) .

The acceleration caused by this mass is

�aA = − GM

|�rA|2 r̂A = −4π
3

Gρ(t)|�rA| r̂A

= −4π
3

Gρ(t)�rA .

The acceleration is radially inward, but the vector expression above already
includes this information.

(b) (8 points) The Hubble velocity is equal to the Hubble parameter H(t) times
the distance from the center, |�rA|, directed radially outward. As a vector
expression, this can be written simply as

�vH = H(t)�rA .
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(c) (9 points) Starting from the definition of the proper velocity,

�vp = �vA − �vH ,

where �vH is given in the previous part, we can differentiate to find

d�vp

dt
=

d�vA

dt
− d

dt
[H(t)�rA ] =

d�vA

dt
− Ḣ �rA − H�vA .

Then note that d�vA/dt can be written from part (a) as

d�vA

dt
= −4π

3
Gρ(t)�rA ,

and

Ḣ =
dH(t)
dt

=
d
dt

(
Ṙ

R

)
=

R̈

R
− Ṙ2

R2
= −4π

3
Gρ(t)− H2(t) ,

where in the last substitution we used the R̈ Friedmann equation,

R̈ = −4π
3

GρR ,

which was listed on the front of the exam. Substituting these expressions into
the previous expression for d�vp/dt, one finds

d�vp

dt
= −4π

3
Gρ(t)�rA − Ḣ �rA − H �vA

= −4π
3

Gρ(t)�rA +
4π
3

Gρ(t)�rA + H2 �rA − H�vA .

The first two terms cancel — physically, this cancellation is just the statement
that that the test particle A and the comoving particles that it is passing are
experiencing the same acceleration. From part (b) we recall that H2 �rA =
H �vH , so

d�vp

dt
= H(�vH − �vA) = −H �vp .

This agrees with the specified form,

d�vp

dt
= −λH(t)�vp ,

provided that λ = 1 .
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(d) (8 points) From the given equation

d�vp

dt
= −λH(t)�vp ,

one can start manipulating by replacing H(t) by Ṙ/R. One can then specialize
the vector equation to the component vp,x, and one can then manipulate the
equation to put everything that depends on vp,x on the left, and everything
that depends on t or R(t) on the right. That is,

dvp,x

dt
= −λH(t) vp,x

can be rewritten as

dvp,x

vp,x
= −λ

1
R

dR

dt
dt = −λ

dR

R
.

Integrating both sides,

ln vp,x = −λ lnR + const .

Exponentiating both sides,

vp,x = econst R−λ(t) .

If we now define the constant

v0 ≡ econst ,

we get the desired the final result,

vp,x = R−λ(t) v0 .

This matches the desired form, provided that

n = −λ .


