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QUIZ 2 SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) Which one of the following is the correct statement of Birkhoff’s theorem, a
result from general relativity theory?

The correct answer was (iii), “The gravitational effect of a uniform medium
external to a spherical cavity is zero” (see Rowan-Robinson, p.63).

Birkhoff’s theorem in general relativity is the analogue of Newton’s “iron
sphere” theorems for non-relativistic gravity. Newton showed that the gravi-
tational field outside of a hollow spherical shell of matter is the same as if all
the matter were concentrated in a point at the center of the sphere, and also
that the field inside the shell is zero (these follow simply from Gauss’ law). We
derived the equations which determine the evolution of the scale factor with
time in a Newtonian model using these facts. The analogous derivation of these
equations in full general relativity invokes Birkhoff’s theorem (and remarkably,
apart from the relativistic correction for pressure, the result is exactly the same
as the Newtonian result).

(b) What is the most likely explanation for the apparent predominance of matter
over antimatter in the present day universe?

The correct answer was (i), “The number of baryons in the early universe
exceeded the number of antibaryons by about 1 part in 109. The overwhelm-
ing majority of these baryon-antibaryon pairs annihilated, leaving an excess
of baryons and a contribution to the large ratio of photons to baryons” (see
Weinberg p.95-98).

There is no known natural physical mechanism which seperates matter from
antimatter. And if the observable universe does contain seperate domains of
antimatter, we might also expect to see some signature of the 511 keV anni-
hilation radiation produced at the boundaries between matter and antimatter
domains (although if the nearest domain boundary is beyond the local super-
cluster, the radiation would probably be too weak to detect).

Most cosmologists are therefore inclined to think that the visible universe has a
real matter-antimatter asymmetry, which presumably arises from some process
in the very early universe. In inflationary models in particular, there is no
way that this asymmetry could have been part of the initial conditions, since
in inflationary models (as we will see) the matter of the universe is generated
as it evolves. This led cosmologists to theories of baryogenesis, in which the
universe started out baryon symmetric but was driven into an asymmetric state
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(usually by invoking the physics of grand unified theories (GUTs), which come
into play at extreme temperatures).

(c) The collisions of neutrons and protons with electrons, neutrinos, and their
antiparticles ceased to be important by t ≈ 3 minutes, but there was still one
process that continued to cause the ratio of neutrons to protons to change.
What was this process?

The correct answer was (ii), “The neutron can decay into an electron, proton,
and antineutrino. This process continued until the temperature was low enough
for deuterium to form”, (see R-R p.88, Weinberg p.109).

After a short time the universe had cooled enough to prevent the baryons from
breaking up into free quarks, but was hot enough (1 MeV � kBT � 1 GeV)
for neutrons (n), protons (p), electrons (e−), positrons (e+), muons (µ−), and
antimuons (µ+) to spontaneously form and react with one another. After a
while the temperature dropped below the rest mass of neutrons, protons and
muons, and the typical reactions occurring were

n −→ p+ + e− + ν̄e (beta decay)
n+ e+ ←→ p+ + ν̄e (e+ capture)
n+ νe ←→ p+ + e− (e− capture)
e+ + e− ←→ 2γ (ann./pair-prod.)
e+ + e− ←→ νe + ν̄e (weak reactions)

These reactions kept all species in equilibrium. The rate of beta decay is
fixed at λnp ≈ 887s, but the rate of the e+/e− capture reactions has a strong
temperature dependance λc ∝ T 5. The capture reactions therefore eventually
“freeze-out” as the universe cools and the reaction rate drops below the rate of
expansion Ṙ/R. Before this occurs, thermal equilibrium ensures that the ratio
of the (comoving) number density of neutrons (denoted by n) to the number
density of protons (denoted by p) is given by the Boltzmann factor

(n/p)eq = exp(−Q/kBT ) where Q ≡ (mn −mp)c2 .

After freezout of the capture reactions it is still possible for neutrons to beta
decay. (“Beta decay” refers to the reaction n −→ p+ + e− + ν̄e which occurs
via the weak force, and the name originates from early 20th century nuclear
physics, when the electrons emitted in the radioactive decay (via the weak
force) of the neutrons in certain nuclei were referred to as “beta radiation”).

This further reduces the neutron to proton ratio, until the temperature becomes
low enough for the deuteron (2H) to form, at about 108.9K, corresponding to
0.068 MeV (much less than the deuteron binding energy 2.22 MeV, since even
at temperatures much lower than the binding energy there may still be plenty
of photons in the tail of the blackbody distribution with greater than binding
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energy). This temperature was reached when the time was t ≈ 180 s (Hence
“the first three minutes”).

After the temperature had dropped enough for the deuteron to form, the fol-
lowing reactions can occur

n+ p←→ d+ γ

d+ d −→ t+ p

d+ d −→ 3He + n

d+ t −→ 4He + n

d+ 3He −→ 4He + p ,

where d is the deuteron (2H) and t is tritium (3H). Hardly any heavier elements
and isotopes are produced until the stars form, much later, after recombination
(but some 7Li is produced, and can be observed).

(d) The spectrum of the cosmic background radiation is distorted very slightly by
the Sunyaev-Zeldovich effect. Which of the following statements is the best
description of this effect?

The correct answer was (iii), “When cosmic background radiation photons
traverse a hot cluster of galaxies, they are scattered by the electrons in the
hot gas within the cluster. The scattering on average increases the energy of
the photons, with the result that the background looks cooler than average
at long wavelengths and hotter than average at short wavelengths” (see R-R
p.86). This effect has already been observed in many clusters of galaxies. Its
use lies in the fact that the observed distortion of the microwave background
spectrum, combined with independent measurements of the x-ray emission from
the hot gas, allows determination of both the baryon density and temperature
within the cluster. This in turn allows measurement of the Hubble constant,
since the intrinsic x-ray luminosity of the cluster can be determined from its
temperature.

(e) Which one of the following processes in the early history of the universe was
the last to occur?

The correct answer was (iii), “Recombination” (or the “epoch of decoupling
of radiation and matter”), i.e. the formation of neutral hydrogen and helium
atoms for the first time (see R-R, p.78, Weinberg, p.112).

Here is a rough description of the sequence of events in the early universe.

The muons (and taus) annihilated earliest when the temperature was about
T ≈ 1012.1K (T ≈ 1013.3 for taus). At temperatures above T ≈ 1010.5K, all of
the following reactions occurred maintaining all species in equilibrium.
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n −→ p+ + e− + ν̄e (beta decay)
n+ e+ ←→ p+ + ν̄e (e+ capture)
n+ νe ←→ p+ + e− (e− capture)
e+ + e− ←→ 2γ (ann./pair-prod)
e+ + e− ←→ νe + ν̄e (weak reactions) .

As the temperature dropped below T ≈ 1010.5K, the reaction e+ + e− ←→
νe + ν̄e froze out2, and neutrinos were no longer in thermal equilibrium after
this (neutrino decoupling).

When the temperature further dropped to T ≈ 1010.1K the reactions n +
e+ ←→ p+ + ν̄e, n+ νe ←→ p+ + e− froze out, and the neutrons were left to
beta decay.

Slightly later, when T ≈ 109.7K, the electrons and positrons annihilated, en-
hancing the temperature of the photon background relative to the neutrino
background (since the neutrinos had decoupled).

The neutron beta decay n −→ p++e−+ ν̄e continued for a few minutes, further
reducing the neutron to proton ratio, until the temperature was low enough
for the deuteron to exist stably, T ≈ 108.9K. Deuterium then fused to produce
stable helium nuclei.

Much later, when the universe had cooled to T ≈ 1000K, there was an insuf-
ficient number of photons with E > 13.6 eV to prevent neutral hydrogen from
forming for the first time (actually neutral helium formed slightly earlier than
the neutral hydrogen, since helium has a higher ionization energy, E ≈ 24.6
eV). After this “epoch of recombination” the universe became transparent to
the CMB photons, which did not interact further with matter until later, at rel-
atively low redshift z = 30−100, the universe was re-ionized by the appearance
of the first stars.

PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION (30
points)

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .



8.286 QUIZ 2 SOLUTIONS, SPRING 2002 p. 5

Numerically, this gives

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate. By substituting k = Boltzmann’s constant =
1.381× 10−16 erg/K = 8.617× 10−5 eV/K, one has

E =
(
3.730× 10−16 erg/K

)
T =

(
2.327× 10−4 eV/K

)
T .

A note about style: The official convention is to use K and not ◦K, but the ◦

symbol is still used with ◦C and ◦F. Note also that the K in the denominator
of the answer is necessary: the symbol T is a temperature, not a pure number,
so “T ergs” would have the units of K·erg, and not ergs. Finally, a conceivable
way to write the answer would be

E = 3.730× 10−16T (in K) erg .

This is intelligible, but style guides such as NIST (National Institute of Stan-
dards and Technology) Special Publication 811 strongly discourage this format.
Another acceptable format would be

E = 3.730× 10−16(T/K) erg .

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives

S = 3.602 k = 4.974× 10−16 erg/K = 3.104× 10−4 eV/K ,
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where k is the Boltzman constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

Completing the numerics,

E = 3.151 kT =
(
4.352× 10−16 erg/K

)
T =

(
2.716× 10−4 eV/K

)
T .

If one takes into account both neutrinos and antineutrinos, the average energy
per particle is unaffected — the energy density and the total number density
are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.
This result can be understood as a natural consequence of the fact that fermions
must obey the exclusion principle, while bosons do not. Large numbers of
bosons can therefore collect in the lowest energy levels. In fermion systems,
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on the other hand, the low-lying levels can accommodate at most one particle,
and then additional particles are forced to higher energy levels.

(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives

S = 4.202 k = 5.803× 10−16 erg/K = 3.621× 10−4 eV/K .

PROBLEM 3: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces
to

ds2 =
a du2

4u(a− u)
=⇒

ds =
1
2

√
a

u(a− u)
du .

To find the length of the radial line shown,
one must integrate this expression from the value
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of u at the center, which is 0, to the value of u at the outer edge, which is a.
So

R =
1
2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving
R = (π/2)

√
a.

(b) For u = constant, the expression for the metric reduces
to

ds2 = u dθ2 =⇒ ds =
√
udθ .

Since θ runs from 0 to 2π, and u = a for the circumfer-
ence of the space,

S =
∫ 2π

0

√
a dθ = 2π

√
a .

(c) To evaluate the answer to first order in du means to
neglect any terms that would be proportional to du2

or higher powers. This means that we can treat the
annulus as if it were arbitrarily thin, in which case
we can imagine bending it into a rectangle without
changing its area. The area is then equal to the cir-
cumference times the width. Both the circumference
and the width must be calculated by using the metric:
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dA = circumference × width

= [2π
√
u0 ]×

[
1
2

√
a

u0(a− u0)
du

]

= π

√
a

(a− u0)
du .

(d) We can find the total area by imagining that it is broken up into annuluses,
where a single annulus starts at radial coordinate u and extends to u + du.
As in part (a), this expression must be integrated from the value of u at the
center, which is 0, to the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a− u)
du .

You did not need to carry out this integration, but the answer would be A =
2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is
written as

d
ds

[
gij

dxj

ds

]
=

1
2
∂gk

∂xi

dxk

ds
dx

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,

where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1. Of course j,
k, and & must all be summed, but the only nonzero contributions arise when
j = 1, and k and & are either both equal to 1 or both equal to 2:

d
ds

[
guu

du
ds

]
=

1
2
∂guu

∂u

(
du
ds

)2

+
1
2
∂gθθ

∂u

(
dθ
ds

)2

.
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d
ds

[
a

4u(a− u)
du
ds

]
=

1
2

[
d
du

(
a

4u(a− u)

)](
du
ds

)2

+
1
2

[
d
du

(u)
](

dθ
ds

)2

=
1
2

[
a

4u(a− u)2
− a

4u2(a− u)

] (
du
ds

)2

+
1
2

(
dθ
ds

)2

=
1
8
a(2u− a)
u2(a− u)2

(
du
ds

)2

+
1
2

(
dθ
ds

)2

.

(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand
side is j = 2. On the right-hand side one finds nontrivial expressions when k
and & are either both equal to 1 or both equal to 2. However, the terms on
the right-hand side both involve the derivative of the metric with respect to
x2 = θ, and these derivatives all vanish. So

d
ds

[
gθθ

dθ
ds

]
=

1
2
∂guu

∂θ

(
du
ds

)2

+
1
2
∂gθθ

∂θ

(
dθ
ds

)2

,

which reduces to

d
ds

[
u
dθ
ds

]
= 0 .


