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REVIEW PROBLEMS FOR QUIZ 2
QUIZ DATE: Tuesday, April 13, 2004

COVERAGE: Lecture Notes 6; Problem Set 3; Ryden, Chapters 4 and 5. One
of the problems on the quiz will be taken verbatim (or at least al-
most verbatim) from either the homework assignments, or from the
starred problems from this set of Review Problems. The starred prob-
lems are the ones that I recommend that you review most carefully: Problems
1, 2, 4, 8, 10, and 11. There are no reading questions, since Ryden has not
previously been used in this course. However, you should be prepared both to
work problems and to answer short-answer questions related to the material in
Ryden’s Chapters 4 and 5. The problems at the end of these chapters look like
a good review.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page
the actual quizzes that were given in 1994, 1996, 1998, 2000, and 2002. The
relevant problems from those quizzes have mostly been incorporated into these
review problems, but you still may be interested in looking at the quizzes, just
to see how much material has been included in each quiz. The coverage of the
upcoming quiz will not necessarily match the coverage of any of the quizzes
from previous years.

REVIEW SESSION: To help you study for the quiz, Vishesh Khemani will hold
a review session on Monday, April 12, from 4:00 - 5:30 p.m. The location will
be announced on the course web page.

INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” at the
beginning. For the second quiz, this useful information will be the following:

DOPPLER SHIFT:

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)
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COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=

R(tobserved)
R(temitted)

COSMOLOGICAL EVOLUTION:(
Ṙ

R

)2

=
8π
3

Gρ− kc2

R2

R̈ = −4π
3

G

(
ρ+

3p
c2

)
R

EVOLUTION OF A FLAT (Ω ≡ ρ/ρc = 1) UNIVERSE:

R(t) ∝ t2/3 (matter-dominated)

R(t) ∝ t1/2 (radiation-dominated)

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

(
Ṙ

R

)2

=
8π
3

Gρ− kc2

R2

R̈ = −4π
3

GρR

ρ(t) =
R3(ti)
R3(t)

ρ(ti)

Closed (Ω > 1): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

where α ≡ 4π
3

GρR3

k3/2c2

Open (Ω < 1): ct = α (sinh θ − θ)
R√
κ
= α (cosh θ − 1) ,

where α ≡ 4π
3

GρR3

κ3/2c2
,

κ ≡ −k .
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ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ

∗PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by
the Robertson-Walker formula:

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more
convenient to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√
1− r2

= dψ ,

so the metric simplifies to

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.
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(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0
for each segment of the trajectory. Consider a light pulse that moves along
a radial line, so θ = φ = constant. Find an expression for dψ/dt in terms of
quantities that appear in the metric.

(b) (8 points) Write an expression for the physical horizon distance  phys at time
t. You should leave your answer in the form of a definite integral.

The form of R(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then R(t) is described by
the parametric equations

ct = α(θ − sin θ) ,

R = α(1− cos θ) ,

where

α ≡ 4π
3

GρR3

c2
.

These equations are identical to those on the front of the exam, except that I have
chosen k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated
closed universe, as described by the equations above. Find an expression for
dψ/dθ, where θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system
(ψ = 0) at t = 0. How long will it take for the photon to return to its starting
place? Express your answer as a fraction of the full lifetime of the universe,
from big bang to big crunch.

∗PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMENSIONAL
METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a
metric given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is
formed by starting at the origin, moving along the θ = 0 line to r = r0, then
moving at fixed r to θ = π/2, and then moving back to the origin at fixed θ. The
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path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.

PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so
the scale factor can be written simply as R, dropping its explicit t-dependence.

A small rod has one end at the point (r = a, θ = 0, φ = 0) and the other end
at the point (r = a, θ = ∆θ, φ = 0). Assume that ∆θ � 1.
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(a) Find the physical distance  p from the origin (r = 0) to the first end (a, 0, 0)
of the rod. You may find one of the following integrals useful:∫

dr√
1− r2

= sin−1 r

∫
dr

1− r2
=

1
2
ln
(
1 + r

1− r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the
scale factor R, and the coordinates a and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write
an expression for this angle in terms of the physical distance  p, the physical
length sp, and the scale factor R.

∗PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC
METRIC (20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which
is spherically symmetric about a particular point, coordinates can be found so that
the metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies
between 0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified.
Given this metric, consider the sphere whose outer boundary is defined by r = r0.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical
length of a radial line which extends from the center to the boundary of the
sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include
the limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.
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PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE
(20 points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may
leave your answer in the form of a radial integral which is not carried out. Be sure,
however, to clearly indicate the limits of integration.

PROBLEM 6: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric massM is described by the Schwarz-
schild metric, given at the front of the exam. Two observers, designated A and B,
are located along the same radial line, with values of the coordinate r given by rA
and rB , respectively, with rA < rB. You should assume that both observers lie
outside the Schwarzschild horizon.

a) (5 points) Write down the expression for the Schwarzschild horizon radiusRSch,
expressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave
the answer to this part in the form of an integral that you do not evaluate—
but be sure to clearly indicate the limits of integration.

c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation
∆tA between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B
receives these pulses, and measures the time separation on his own clock. What
is the time interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static
black hole, so the Schwarzschild metric is valid for all r. Now suppose that one
considers the case in which observer A lies on the Schwarzschild horizon, so
rA ≡ RSch. Is the proper distance between A and B finite for this case? Does
the time interval of the pulses received by B, ∆τB, diverge in this case?
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PROBLEM 7: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordi-
nates by the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the para-
meter λ is the arc length measured along the curve. Use the general formula
on the front of the exam to obtain explicit differential equations which r(λ)
and θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.

∗PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD
(30 points)

The following problem was Problem 2, Quiz 3, 1990:

In this problem we will consider the metric

ds2
ST = − [

c2 + 2φ((x)
]
dt2 +

3∑
i=1

(
dxi

)2
,

which describes a static gravitational field. Here i runs from 1 to 3, with the
identifications x1 ≡ x, x2 ≡ y, and x3 ≡ z. The function φ((x) depends only on the
spatial variables (x ≡ (x1, x2, x3), and not on the time coordinate t.

(a) Suppose that a radio transmitter, located at (xe, emits a series of evenly spaced
pulses. The pulses are separated by a proper time interval ∆Te, as measured
by a clock at the same location. What is the coordinate time interval ∆te
between the emission of the pulses? (I.e., ∆te is the difference between the
time coordinate t at the emission of one pulse and the time coordinate t at the
emission of the next pulse.)

(b) The pulses are received by an observer at (xr, who measures the time of arrival
of each pulse. What is the coordinate time interval ∆tr between the reception
of successive pulses?
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(c) The observer uses his own clocks to measure the proper time interval ∆Tr
between the reception of successive pulses. Find this time interval, and also
the redshift z, defined by

1 + z =
∆Tr
∆Te

.

First compute an exact expression for z, and then expand the answer to lowest
order in φ((x) to obtain a weak-field approximation. (This weak-field approxi-
mation is in fact highly accurate in all terrestrial and solar system applications.)

(d) A freely falling particle travels on a spacetime geodesic xµ(τ ), where τ is the
proper time. (I.e., τ is the time that would be measured by a clock moving
with the particle.) The trajectory is described by the geodesic equation

d

dτ

(
gµν

dxν

dτ

)
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,

where the Greek indices (µ, ν, λ, σ, etc.) run from 0 to 3, and are summed over
when repeated. Calculate an explicit expression for

d2xi

dτ 2
,

valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dτ or
dxi/dτ in the answer.)

PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE

In this problem we will test the geodesic equation by computing the geodesic
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes
6, with metric given by

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
.

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized
by θ = π/2 and φ = ψ, where ψ is a parameter which runs from 0 to 2π.
Show that if the equator is rotated by an angle α about the x-axis, then the
equations become:

cos θ = sinψ sinα

tanφ = tanψ cosα .

(b) Using the generic form of the geodesic equation on the front of the exam, derive
the differential equation which describes geodesics in this space.

(c) Show that the expressions in (a) satisfy the differential equation for the geo-
desic. Hint: The algebra on this can be messy, but I found things were reason-
ably simple if I wrote the derivatives in the following way:

dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
,

dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.
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∗PROBLEM 10: GEODESICS IN A CLOSED UNIVERSE

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points
plus 5 points extra credit.

Consider the case of closed Robertson-Walker universe. Taking k = 1, the
spacetime metric can be written in the form

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

We will assume that this metric is given, and that R(t) has been specified. While
galaxies are approximately stationary in the comoving coordinate system described
by this metric, we can still consider an object that moves in this system. In particu-
lar, in this problem we will consider an object that is moving in the radial direction
(r-direction), under the influence of no forces other than gravity. Hence the object
will travel on a geodesic.

(a) (7 points) Express dτ/dt in terms of dr/dt.

(b) (3 points) Express dt/dτ in terms of dr/dt.

(c) (10 points) If the object travels on a trajectory given by the function rp(t)
between some time t1 and some later time t2, write an integral which gives the
total amount of time that a clock attached to the object would record for this
journey.

(d) (10 points) During a time interval dt, the object will move a coordinate distance

dr =
dr

dt
dt .

Let d denote the physical distance that the object moves during this time. By
“physical distance,” I mean the distance that would be measured by a comoving
observer (an observer stationary with respect to the coordinate system) who is
located at the same point. The quantity d /dt can be regarded as the physical
speed vphys of the object, since it is the speed that would be measured by a
comoving observer. Write an expression for vphys as a function of dr/dt and r.

(e) (10 points) Using the formulas at the front of the exam, derive the geodesic
equation of motion for the coordinate r of the object. Specifically, you should
derive an equation of the form

d

dτ

[
A

dr

dτ

]
= B

(
dt

dτ

)2

+ C

(
dr

dτ

)2

+D

(
dθ

dτ

)2

+ E

(
dφ

dτ

)2

,

where A, B, C , D, and E are functions of the coordinates, some of which might
be zero.
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(f) (5 points EXTRA CREDIT) On Problem 4 of Problem Set 3 we learned that
in a flat Robertson-Walker metric, the relativistically defined momentum of a
particle,

p =
mvphys√
1− v2

phys
c2

,

falls off as 1/R(t). Use the geodesic equation derived in part (e) to show that
the same is true in a closed universe.

∗PROBLEM 11: A TWO-DIMENSIONAL CURVED SPACE (40
points)

The following problem was Problem 3, Quiz 2, 2002.

Consider a two-dimensional curved space described by
polar coordinates u and θ, where 0 ≤ u ≤ a and 0 ≤ θ ≤ 2π,
and θ = 2π is as usual identified with θ = 0. The metric is
given by

ds2 =
adu2

4u(a− u)
+ u dθ2 .

A diagram of the space is shown at the right, but you should
of course keep in mind that the diagram does not accurately
reflect the distances defined by the metric.

(a) (6 points) Find the radius R of the space, defined as
the length of a radial (i.e., θ = constant) line. You
may express your answer as a definite integral, which
you need not evaluate. Be sure, however, to specify the
limits of integration.

(b) (6 points) Find the circumference S of the space, de-
fined as the length of the boundary of the space at
u = a.
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(c) (7 points) Consider an annular region as shown, con-
sisting of all points with a u-coordinate in the range
u0 ≤ u ≤ u0 + du. Find the physical area dA of this
region, to first order in du.

(d) (3 points) Using your answer to part (c), write an expression for the total area
of the space.

(e) (10 points) Consider a geodesic curve in this space, described by the functions
u(s) and θ(s), where the parameter s is chosen to be the arc length along the
curve. Find the geodesic equation for u(s), which should have the form

d
ds

[
F (u, θ)

du
ds

]
= . . . ,

where F (u, θ) is a function that you will find. (Note that by writing F as a
function of u and θ, we are saying that it could depend on either or both of
them, but we are not saying that it necessarily depends on them.) You need
not simplify the left-hand side of the equation.

(f) (8 points) Similarly, find the geodesic equation for θ(s), which should have the
form

d
ds

[
G(u, θ)

dθ
ds

]
= . . . ,

where G(u, θ) is a function that you will find. Again, you need not simplify the
left-hand side of the equation.
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SOLUTIONS

PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 +R2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

R2(t)
,

which implies that

dψ

dt
= ± c

R(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

R(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

 phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

R(t)dψ = R(t)
∫ t

0

c

R(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

R(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=

α

c
(1− cos θ) .
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Then
dψ

dθ
=

dψ

dt

dt

dθ
=

α(1 − cos θ)
R(t)

.

Then using R = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From R = α(1− cos θ), one can see that R returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 6. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details
of the motion. The argument was simply that, at the big crunch when the scale
factor returns to zero, all distances would return to zero, including the distance
between the photon and its starting place. This statement is correct, but it does
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch.
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Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting
point at the big crunch. To be concrete, let me consider a radiation-dominated
closed universe—a hypothetical universe for which the only “matter” present
consists of massless particles such as photons or neutrinos. In that case (you
can check my calculations) a photon that leaves the north pole at t = 0 just
reaches the south pole at the big crunch. It might seem that reaching the south
pole at the big crunch is not any different from completing the round trip back
to the north pole, since the distance between the north pole and the south pole
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1 + ar)2 dr2, or ds = (1 + ar)dr.
Integrating, the length of the first segment is found to be

S1 =
∫ r0

0

(1 + ar)dr = r0 +
1
2
ar2

0 .

Along the second segment dr = 0, so ds = r(1 + br)dθ, where r = r0. So the
length of the second segment is

S2 =
∫ π/2

0

r0(1 + br0)dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length
is then

S = 2S1 + S2 = 2
(
r0 +

1
2
ar2

0

)
+

π

2
r0(1 + br0)

=
(
2 +

π

2

)
r0 +

1
2
(2a + πb)r2

0 .
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b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the
width of the strip is determined by the metric to be

dh = (1 + ar)dr .

The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then
dA = s(r)dh ,

so

A =
∫ r0

0

s(r)dh

=
∫ r0

0

π

2
r(1 + br)(1 + ar)dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3 ] dr

=
π

2

[
1
2
r2
0 +

1
3
(a + b)r3

0 +
1
4
abr4

0

]
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (a, 0, 0), there is no variation in θ
or φ. So dθ = dφ = 0, and

ds =
Rdr√
1− r2

.

So

 p =
∫ a

0

Rdr√
1− r2

= R sin−1 a .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = Rr dθ ,

so

sp = Ra∆θ .

(c) From part (a), one has
a = sin( p/R) .

Inserting this expression into the answer to (b), and then solving for ∆θ, one
has

∆θ =
sp

R sin( p/R)
.

Note that as R → ∞, this approaches the Euclidean result, ∆θ = sp/ p.

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends
from the center to the boundary of the sphere. The length of a path is just the
integral of ds, so

a =
∫
radial path from
origin to r0

ds .
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The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then
ds = dr. So

a =
∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ.
Then ds = ρ(r0)dθ. Similarly, a path obtained by varying only φ has length
ds = ρ(r0) sin θ dφ. Furthermore, these two paths are perpendicular to each
other, a fact that is incorporated into the metric by the absence of a dr dθ
term. Thus, the area of a small rectangle constructed from these two paths is
given by the product of their lengths, so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate
variables:

A = ρ2(r0)
∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)

=⇒ A = 4πρ2(r0) .

As a check, notice that if ρ(r) = r, then the metric becomes the metric of
Euclidean space, in spherical polar coordinates. In this case the answer above
becomes the well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 2 of Problem Set 3 (2000), we can imagine breaking up the
volume into spherical shells of infinitesimal thickness, with a given shell ex-
tending from r to r+dr. By the previous calculation, the area of such a shell is
A(r) = 4πρ2(r). (In the previous part we considered only the case r = r0, but
the same argument applies for any value of r.) The thickness of the shell is just
the path length ds of a radial path corresponding to the coordinate interval dr.
For radial paths the metric reduces to ds2 = dr2, so the thickness of the shell
is ds = dr. The volume of the shell is then

dV = 4πρ2(r)dr .
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The total volume is then obtained by integration:

V = 4π
∫ r0

0

ρ2(r)dr .

Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives
V = (4π/3)r3

0 , as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of
the two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√

σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )

[
dθ2 + sin2 θ dφ2

]
.

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal
changes in the coordinates r, θ and φ equals the differential volume element dV .
Therefore

dV = R(t)
dr√

1− kr2
×R(t)rdθ ×R(t)r sin θdφ

The total volume is then

V =
∫

dV = R3(t)
∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πR3(t)
∫ rmax

0

r2dr√
1− kr2

.
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[Pedagogical Note: If you don’t see through the solutions above, then note that the
volume of the sphere can be determined by integration, after first breaking the
volume into infinitesimal cells. A generic cell is shown in the diagram below:

The cell includes the volume lying between r and r+dr, between θ and θ+dθ,
and between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero,
the cell approaches a rectangular solid with sides of length:

ds1 = R(t)
dr√

1− kr2

ds2 = R(t)r dθ

ds3 = R(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing
only one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation
relies on the orthogonality of the dr, dθ, and dφ directions; the orthogonality
is implied by the metric, which otherwise would contain cross terms such as
dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution√
k r = sinψ (if k > 0)

√−k r = sinhψ (if k > 0).
The answer is

V =




2πR3(t)


 sin−1

(√
k rmax

)
k3/2

−
√

1− kr2
max

k


 (if k > 0)

2πR3(t)

[√
1− kr2

max

(−k)
− sinh−1

(√−k rmax

)
(−k)3/2

]
(if k < 0) .]
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PROBLEM 6: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes sin-
gular. Since the metric contains the factor

(
1− 2GM

rc2

)
,

it becomes singular at

RSch =
2GM

c2
.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =
(
1− 2GM

rc2

)−1

dr2 ,

so
ds =

dr√
1− 2GM

rc2

.

The proper distance from A to B is obtained by adding the proper lengths of
all the segments along the path, so

sAB =
∫ rB

rA

dr√
1− 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the
expression for the Schwarzschild radius to rewrite the expression for sAB as

sAB =
∫ rB

rA

√
r dr√

r −RSch

.

Then introduce the hyperbolic trigonometric substitution

r = RSch cosh2 u .

One then has √
r −RSch =

√
RSch sinhu
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dr = 2RSch coshu sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RSch

= 2RSch

∫
cosh2 u du

= RSch

∫
(1 + cosh 2u)du

= RSch

(
u+

1
2
sinh 2u

)

= RSch(u + sinhu coshu)

= RSch sinh−1

(√
r

RSch
− 1

)
+
√

r(r −RSch) .

Thus,

sAB = RSch

[
sinh−1

(√
rB

RSch
− 1

)
− sinh−1

(√
rA

RSch
− 1

)]

+
√

rB(rB −RSch)−
√

rA(rA −RSch) .

c) A tick of the clock and the following tick are two events that differ only in their
time coordinates. Thus, the metric reduces to

−c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 ,

so

dτ =

√
1− 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ ,
so the corresponding interval of the coordinate t is given by

∆tA =
∆τA√
1− 2GM

rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving
A will take the same length of time to reach B. Thus, the pulses emitted by A
will arrive at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√
1− 2GM

rAc2

.
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The clock at B, however, will read the proper time and not the coordinate
time. Thus,

∆τB =

√
1− 2GM

rBc2
∆tB

=

√√√√1− 2GM
rBc2

1− 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten
as

sAB =
∫ rB

RSch

√
rdr√

r −RSch

.

The potentially divergent part of the integral comes from the range of integra-
tion in the immediate vicinity of r = RSch, say RSch < r < RSch + ε. For this
range the quantity

√
r in the numerator can be approximated by

√
RSch, so

the contribution has the form

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

.

Changing the integration variable to u ≡ r − RSch, the contribution can be
easily evaluated:

√
RSch

∫ RSch+ε

RSch

dr√
r −RSch

=
√

RSch

∫ ε

0

du√
u
= 2

√
RSchε < ∞ .

So, although the integrand is infinite at r = RSch, the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RSch,

The time interval ∆τB diverges.
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PROBLEM 7: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc
length along the curve, can be written as

d

dλ

{
gij

dxj

dλ

}
=

1
2
(∂igk�)

dxk

dλ

dx�

dλ
.

Here the indices j, k, and  are summed from 1 to the dimension of the space, so
there is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1
2
(∂rgθθ)

dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1
2
(
∂rr

2
)(dθ

dλ

)2

,

or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j).
So

d

dλ

{
r2 dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving
along the curve, and expressing the coordinates as a function of the distance
traveled. (I am calling the locus y = 1 a curve rather than a line, since the
techniques that are used here are usually applied to curves. Since a line is a
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special case of a curve, there is nothing wrong with treating the line as a curve.)
In Cartesian coordinates, the curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent
any point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√

x2(λ) + y2(λ) =
√

λ2 + 1 ,

θ(λ) = tan−1 y(λ)
x(λ)

= tan−1(1/λ) .

Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)3/2
=

1

(λ2 + 1)3/2
=

1
r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1
λ2

= − 1
r2

.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1
r3

= r

(
− 1

r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2 dθ

dλ

}
= 0 ⇐⇒ d

dλ

{
r2

(
− 1

r2

)}
= 0 ,

which also checks.

* If you do not remember how to differentiate φ = tan−1(z), then you should
know how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =
(
cosφ
cosφ

+
sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1
1 + tan2 φ

=
1

1 + z2
.
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PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD

(a) ds2
ST is the invariant separation between the event at (xi, t) and the event at

(xi + dxi, t + dt). Here xi and t are arbitrary coordinates that are connected
to measurements only through the metric. ds2

ST is defined to equal

−c2dT 2 + d(r 2 ,

where d(r and dT denote the space and time separation as it would be mea-
sured by a freely falling observer. Taking the transmitter as the freely falling
observer* and taking the emission of two successive pulses as the two events,
one has

ds2
ST = −c2(∆Te)2 .

To connect with the metric, note that the successive emissions have a separation
in the time coordinate of ∆te, and a separation of space coordinates dxi = 0.
So

ds2
ST = − [

c2 + 2φ((xe)
]
(∆te)2 ,

and then
−c2(∆Te)2 = −[c2 + 2φ((xe)](∆te)2 =⇒

∆te =
∆Te√

1 + 2φ(�xe)
c2

.

(b) Since the metric is independent of t, each pulse follows a trajectory identical
to the previous pulse, but delayed in t. Thus each pulse requires the same time
interval ∆t to travel from emitter to receiver, so the pulses arrive with the same
t-separation as they have at emission:

∆tr = ∆te .

(c) This is similar to part (a), but in this case we consider the two events cor-
responding to the reception of two successive pulses. ds2

ST is related to the
physical measurement ∆Tr by

ds2
ST = −c2(∆Tr)2 .

* The transmitter is not really a freely falling observer, but is presumably held
at rest in this coordinate system. Thus gravity is acting on the clock, and could in
principle affect its speed. It is standard, however, to assume that such effects are
negligible. That is, one assumes that the clock is ideal, meaning that it ticks at
the same rate as a freely falling clock that is instantaneously moving with the same
velocity.
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It is connected to the coordinate separation ∆tr through the metric, where
again we use the fact that the two events have zero separation in their space
coordinates— i.e., dxi = 0. So

ds2
ST = −[c2 + 2φ((xr)](∆tr)2 .

Then
−c2(∆Tr)2 = −[c2 + 2φ((xr)](∆te)2 =⇒

∆Tr =

√
1 +

2φ((xr)
c2

∆te .

We can cast this into a more useful form for the problem by using the solution
for ∆te found in part (c). This gives

∆Tr =



√

1 + 2φ(�xr)
c2√

1 + 2φ(�xe)
c2


∆Te .

Substitute this result for ∆Tr directly into the definition for Z to obtain the
exact expression for the redshift,

1 + Z =

√
1 + 2φ(�xr)

c2√
1 + 2φ(�xe)

c2

.

Remember that
√
1 + x ≈ 1+ 1

2x for small x. For weak fields, that is, for small
values of φ((x), we can expand our result to lowest order in φ((x). Expanding
the numerator we have √

1 +
2φ((xr)

c2
≈ 1 +

φ((xr)
c2

.

Similarly we find for
1√

1 + 2φ(�xe)
c2

≈ 1− φ((xe)
c2

.

Putting these approximations into our exact expression for 1 + Z we obtain

1 + Z ≈
(
1 +

φ((xr)
c2

)(
1− φ((xe)

c2

)
≈ 1 +

φ((xr)
c2

− φ((xe)
c2

,
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where we dropped terms in φ((xe)φ((xr). Finally,

Z ≈ φ((xr)− φ((xe)
c2

.

(d) For the metric at hand we know g00 = −[c2 +2φ((x)], gk0 = 0 and gik = gki =
δik. It is useful to notice that only g00 depends on (x and thus ∂igkm = 0. The
geodesic equation corresponding to µ = i, where i runs from 1 to 3, is

d

dτ

(
gik

dxk

dτ

)
=

1
2
(∂igλσ)

dxλ

dτ

dxσ

dτ
=⇒

δik
d2xk

dτ 2
=

1
2
(∂ig00)

dx0

dτ

dx0

dτ
.

Using x0 ≡ t, δikyk = yi and

∂ig00 = −∂i(c2 + 2φ((x)) = − 2
c2

∂iφ((x)

we find

d2xi

d2τ
= −∂iφ((x)

(
dt

dτ

)2

.

[Pedagogical Note: You might prefer to use the notation x0 ≡ ct, which is also a
very common choice. In that case the metric is rewritten as

ds2
ST = −

[
1 +

2φ((x)
c2

] (
dx0

)2
+

3∑
i=1

(
dxi

)2
,

so one takes g00 = − [
1 + (2φ((x)/c2)

]
. In the end one finds the same answer

as the boxed equation above.

Note also that when φ is small and velocities are nonrelativistic, then
dt/dτ ≈ 1. Thus one has d2xi/d2t ≈ −∂iφ((x), so φ((x) can be identified with
the Newtonian gravitational potential. In the context of general relativity,
Newtonian gravity is a distortion of the metric in the time-direction.]
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PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE

(a) Rotations are easy to understand in Cartesian coordinates. The relationship
between the polar and Cartesian coordinates is given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The equator is then described by θ = π/2, and φ = ψ, where ψ is a parameter
running from 0 to 2π. Thus, the equator is described by the curve xi(ψ), where

x1 = x = r cosψ

x2 = y = r sinψ

x3 = z = 0 .

Now introduce a primed coordinate system that is related to the original system
by a rotation in the y-z plane by an angle α:

x = x′

y = y′ cosα− z′ sinα

z = z′ cosα+ y′ sinα .
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The rotated equator, which we seek to describe, is just the standard equator
in the primed coordinates:

x′ = r cosψ , y′ = r sinψ , z′ = 0 .

Using the relation between the two coordinate systems given above,

x = r cosψ

y = r sinψ cosα

z = r sinψ sinα .

Using again the relations between polar and Cartesian coordinates,

cos θ =
z

r
= sinψ sinα

tanφ =
y

x
= tanψ cosα .

(b) A segment of the equator corresponding to an interval dψ has length adψ, so
the parameter ψ is proportional to the arc length. Expressed in terms of the
metric, this relationship becomes

ds2 = gij
dxi

dψ

dxj

dψ
dψ2 = a2dψ2 .

Thus the quantity

A ≡ gij
dxi

dψ

dxj

dψ

is equal to a2, so the geodesic equation (6.36) reduces to the simpler form of
Eq. (6.38). (Note that we are following the notation of Lecture Notes 6, except
that the variable used to parametrize the path is called ψ, rather than λ or s.
Although A is not equal to 1 as we assumed in Lecture Notes 6, it is easily seen
that Eq. (6.38) follows from (6.36) provided only that A = constant.) Thus,

d

dψ

{
gij

dxj

dψ

}
=

1
2
(∂igk�)

dxk

dψ

dx�

dψ
.

For this problem the metric has only two nonzero components:

gθθ = a2 , gφφ = a2 sin2 θ .
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Taking i = θ in the geodesic equation,

d

dψ

{
gθθ

dθ

dψ

}
=

1
2
∂θgφφ

dφ

dψ

dφ

dψ
=⇒

d2θ

dψ2
= sin θ cos θ

(
dφ

dψ

)2

.

Taking i = φ,
d

dψ

{
a2 sin2 θ

dφ

dψ

}
= 0 =⇒

d

dψ

{
sin2 θ

dφ

dψ

}
= 0 .

(c) This part is mainly algebra. Taking the derivative of

cos θ = sinψ sinα

implies
− sin θ dθ = cosψ sinα dψ .

Then, using the trigonometric identity sin θ =
√
1− cos2 θ, one finds

sin θ =
√

1− sin2 ψ sin2 α ,

so
dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
.

Similarly

tanφ = tanψ cosα =⇒ sec2 φdφ = sec2 ψ dψ cosα .

Then
sec2 φ = tan2 φ+ 1 = tan2 ψ cos2 α + 1

=
1

cos2 ψ
[sin2 ψ cos2 α+ cos2 ψ]

= sec2 ψ[sin2 ψ(1− sin2 α) + cos2 ψ]

= sec2 ψ[1− sin2 ψ sin2 α] ,
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So
dφ

dψ
=

cosα
1− sin2 ψ sin2 α

.

To verify the geodesic equations of part (b), it is easiest to check the second
one first:

sin2 θ
dφ

dψ
= (1− sin2 ψ sin2 α)

cosα
1 − sin2 ψ sin2 α

= cosα ,

so clearly
d

dψ

{
sin2 θ

dφ

dψ

}
=

d

dψ
(cosα) = 0 .

To verify the first geodesic equation from part (b), first calculate the left-hand
side, d2θ/dψ2, using our result for dθ/dψ:

d2θ

dψ2
=

d

dψ

(
dθ

dψ

)
=

d

dψ

{
− cosψ sinα√

1− sin2 ψ sin2 α

}
.

After some straightforward algebra, one finds

d2θ

dψ2
=

sinψ sinα cos2 α[
1− sin2 ψ sin2 α

]3/2 .

The right-hand side of the first geodesic equation can be evaluated using the
expression found above for dφ/dψ, giving

sin θ cos θ
(

dφ

dψ

)2

=
√

1− sin2 ψ sin2 α sinψ sinα
cos2 α[

1− sin2 ψ sin2 α
]2

=
sinψ sinα cos2 α[

1− sin2 ψ sin2 α
]3/2 .

So the left- and right-hand sides are equal.

PROBLEM 10: GEODESICS IN A CLOSED UNIVERSE

(a) (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces
do

−c2 d 2 = −c2 dt2 +R2(t)
{

dr2

1− r2

}
.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, SPRING 2004 p. 33

Dividing by dt2,

−c2

(
d

dt

)2

= −c2 +
R2(t)
1− r2

(
dr

dt

)2

.

Rearranging,

d

dt
=

√
1− R2(t)

c2(1− r2)

(
dr

dt

)2

.

(b) (3 points)

dt

d
=

1
d

dt

=
1√

1− R2(t)
c2(1 − r2)

(
dr

dt

)2
.

(c) (10 points) During any interval of clock time dt, the proper time that would
be measured by a clock moving with the object is given by d , as given by the
metric. Using the answer from part (a),

d =
d

dt
dt =

√
1− R2(t)

c2(1 − r2
p)

(
drp
dt

)2

dt .

Integrating to find the total proper time,

=
∫ t2

t1

√
1− R2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .

(d) (10 points) The physical distance d that the object moves during a given time
interval is related to the coordinate distance dr by the spatial part of the metric:

d 2 = ds2 = R2(t)
{

dr2

1− r2

}
=⇒ d =

R(t)√
1− r2

dr .

Thus

vphys =
d 

dt
=

R(t)√
1− r2

dr

dt
.
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Discussion: A common mistake was to include −c2 dt2 in the expression for
d 2. To understand why this is not correct, we should think about how an
observer would measure d , the distance to be used in calculating the velocity
of a passing object. The observer would place a meter stick along the path of the
object, and she would mark off the position of the object at the beginning and
end of a time interval dtmeas. Then she would read the distance by subtracting
the two readings on the meter stick. This subtraction is equal to the physical
distance between the two marks, measured at the same time t. Thus, when
we compute the distance between the two marks, we set dt = 0. To compute
the speed she would then divide the distance by dtmeas, which is nonzero.

(e) (10 points) We start with the standard formula for a geodesic, as written on
the front of the exam:

d

d

{
gµν

dxν

d

}
=

1
2
(∂µgλσ)

dxλ

d

dxσ

d
.

This formula is true for each possible value of µ, while the Einstein summation
convention implies that the indices ν, λ, and σ are summed. We are trying to
derive the equation for r, so we set µ = r. Since the metric is diagonal, the
only contribution on the left-hand side will be ν = r. On the right-hand side,
the diagonal nature of the metric implies that nonzero contributions arise only
when λ = σ. The term will vanish unless dxλ/d is nonzero, so λ must be
either r or t (i.e., there is no motion in the θ or φ directions). However, the
right-hand side is proportional to

∂gλσ
∂r

.

Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only
nonzero contribution on the right-hand side arises from λ = σ = r. Using

grr =
R2(t)
1− r2

,

the geodesic equation becomes

d

d

{
grr

dr

d

}
=

1
2
(∂rgrr)

dr

d

dr

d
,

or
d

d

{
R2

1− r2

dr

d

}
=

1
2

[
∂r

(
R2

1− r2

)]
dr

d

dr

d
,
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or finally

d

d

{
R2

1− r2

dr

d

}
= R2 r

(1− r2)2

(
dr

d

)2

.

This matches the form shown in the question, with

A =
R2

1− r2
, and C = R2 r

(1− r2)2
,

with B = D = E = 0.

(f) (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too
bad if one does the calculation in an efficient way. One good way to start is to
simplify the expression for p. Using the answer from (d),

p =
mvphys√
1− v2

phys
c2

=
m

R(t)√
1−r2

dr
dt√

1− R2

c2(1−r2)

(
dr
dt

)2 .

Using the answer from (b), this simplifies to

p = m
R(t)√
1− r2

dr

dt

dt

d
= m

R(t)√
1− r2

dr

d
.

Multiply the geodesic equation by m, and then use the above result to rewrite
it as

d

d

{
Rp√
1− r2

}
= mR2 r

(1 − r2)2

(
dr

d

)2

.

Expanding the left-hand side,

LHS =
d

d

{
Rp√
1− r2

}
=

1√
1− r2

d

d
{Rp} +Rp

r

(1− r2)3/2
dr

d

=
1√

1− r2

d

d
{Rp} +mR2 r

(1− r2)2

(
dr

d

)2

.

Inserting this expression back into left-hand side of the original equation, one
sees that the second term cancels the expression on the right-hand side, leaving

1√
1− r2

d

d
{Rp} = 0 .

Multiplying by
√
1− r2 , one has the desired result:

d

d
{Rp} = 0 =⇒ p ∝ 1

R(t)
.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, SPRING 2004 p. 36

PROBLEM 11: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces
to

ds2 =
adu2

4u(a− u)
=⇒

ds =
1
2

√
a

u(a − u)
du .

To find the length of the radial line shown,
one must integrate this expression from the value
of u at the center, which is 0, to the value of u at the outer edge, which is a.
So

R =
1
2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving
R = (π/2)

√
a.

(b) For u = constant, the expression for the metric reduces
to

ds2 = u dθ2 =⇒ ds =
√

u dθ .

Since θ runs from 0 to 2π, and u = a for the circumfer-
ence of the space,

S =
∫ 2π

0

√
adθ = 2π

√
a .
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(c) To evaluate the answer to first order in du means to
neglect any terms that would be proportional to du2

or higher powers. This means that we can treat the
annulus as if it were arbitrarily thin, in which case
we can imagine bending it into a rectangle without
changing its area. The area is then equal to the cir-
cumference times the width. Both the circumference
and the width must be calculated by using the metric:

dA = circumference× width

= [2π
√
u0 ]×

[
1
2

√
a

u0(a − u0)
du
]

= π

√
a

(a− u0)
du .

(d) We can find the total area by imagining that it is broken up into annuluses,
where a single annulus starts at radial coordinate u and extends to u + du.
As in part (a), this expression must be integrated from the value of u at the
center, which is 0, to the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a − u)
du .

You did not need to carry out this integration, but the answer would be A =
2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is
written as

d
ds

[
gij

dxj

ds

]
=

1
2
∂gk�
∂xi

dxk

ds
dx�

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,
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where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1. Of course j,
k, and  must all be summed, but the only nonzero contributions arise when
j = 1, and k and  are either both equal to 1 or both equal to 2:

d
ds

[
guu

du
ds

]
=

1
2
∂guu
∂u

(
du
ds

)2

+
1
2
∂gθθ
∂u

(
dθ
ds

)2

.

d
ds

[
a

4u(a− u)
du
ds

]
=

1
2

[
d
du

(
a

4u(a− u)

)](
du
ds

)2

+
1
2

[
d
du

(u)
](

dθ
ds

)2

=
1
2

[
a

4u(a − u)2
− a

4u2(a − u)

](
du
ds

)2

+
1
2

(
dθ
ds

)2

=
1
8

a(2u − a)
u2(a − u)2

(
du
ds

)2

+
1
2

(
dθ
ds

)2

.

(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand
side is j = 2. On the right-hand side one finds nontrivial expressions when k
and  are either both equal to 1 or both equal to 2. However, the terms on
the right-hand side both involve the derivative of the metric with respect to
x2 = θ, and these derivatives all vanish. So

d
ds

[
gθθ

dθ
ds

]
=

1
2
∂guu
∂θ

(
du
ds

)2

+
1
2
∂gθθ
∂θ

(
dθ
ds

)2

,

which reduces to

d
ds

[
u
dθ
ds

]
= 0 .


