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QUIZ DATE: Thursday, May 6, 2004

COVERAGE: Lecture Notes 7, 8, and 10; Problem Sets 4 and 5; Weinberg,
Chapters 4 and 5; Ryden, Chapters 8 and 9, and the Epilogue. One of the
problems on the quiz will be taken verbatim (or at least almost ver-
batim) from either the homework assignments, or from the starred
problems from this set of Review Problems. The starred problems are
the ones that I recommend that you review most carefully: Problems 1, 2, 3,
4, 6, and 7.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page
the actual quizzes that were given in 1994, 1996, 1998, and 2000. The last quiz
from 2002 will be posted shortly. The relevant problems from those quizzes
have mostly been incorporated into these review problems, but you still may
be interested in looking at the quizzes, just to see how much material has been
included in each quiz. The coverage of the upcoming quiz will not necessarily
match the coverage of any of the quizzes from previous years.

INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” at the
beginning. For the second quiz, this useful information will be the following:

DOPPLER SHIFT:

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=

R(tobserved)
R(temitted)
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COSMOLOGICAL EVOLUTION:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2

R̈ = −4π
3
G

(
ρ+

3p
c2

)
R

EVOLUTION OF A FLAT (Ω ≡ ρ/ρc = 1) UNIVERSE:

R(t) ∝ t2/3 (matter-dominated)

R(t) ∝ t1/2 (radiation-dominated)

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2

R̈ = −4π
3
GρR

ρ(t) =
R3(ti)
R3(t)

ρ(ti)

Closed (Ω > 1): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

where α ≡ 4π
3
GρR3

k3/2c2

Open (Ω < 1): ct = α (sinh θ − θ)
R√
κ
= α (cosh θ − 1) ,

where α ≡ 4π
3
GρR3

κ3/2c2
,

κ ≡ −k .

ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
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SCHWARZSCHILD METRIC:

ds2 = −c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ

COSMOLOGICAL CONSTANT:

pvac = −ρvacc
2 ρvac =

Λc2

8πG

where Λ is the cosmological constant.

PHYSICAL CONSTANTS:

G = 6.673× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K ,

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

c = 2.998× 1010 cm/sec

1 yr = 3.156× 107 s

1 eV = 1.602× 10−12 erg .
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BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV� kT � me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

∗PROBLEM 1: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number
density of thermal neutrinos left over from the big bang?
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∗PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION (25
points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the for-
mulas at the front of the exam. Since you were not asked to bring calculators, you
may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of pho-
tons at temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has
spin zero, so there is only one spin state. Would the average energy per particle
and entropy per particle be different from the answers you gave in parts (a)
and (b)? If so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These
particles are fermions with spin 1/2, and we will assume that they are massless
and have only one possible spin state. What is the average energy per particle
for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation
of neutrinos, as described in part (d)?

∗PROBLEM 3: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly
the same properties as an electron, except that its mass is given by mc2 = 0.750
MeV.

Parts (a)-(c) of this question require numerical answers, but since you were
not told to bring calculators, you need not carry out the arithmetic. Your answer
should be expressed, however, in “calculator-ready” form— that is, it should be an
expression involving pure numbers only (no units), with any necessary conversion
factors included. (For example, if you were asked how many meters a light pulse in
vacuum travels in 5 minutes, you could express the answer as 2.998× 108× 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per
cubic meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
value of the mass density at t = .01 sec? You may assume that 0.75 MeV 	
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kT 	 100 MeV, so the particles contributing significantly to the black-body
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion
pairs. Express your answer in the units of gm-cm−3.

c) (5 points) Under the same assumptions as in (b), what would be the value of
kT , in MeV, at t = .01 sec?

d) (5 points) When nucleosynthesis calculations are modified to include the effect
of the 8.286ion, is the production of helium increased or decreased? Explain
your answer in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT � 0.75 MeV. If the
8.286ions are included, what does one predict for the value of Tν/Tγ today?
(Here Tν denotes the temperature of the neutrinos, and Tγ denotes the tem-
perature of the cosmic background radiation photons.)

∗PROBLEM 4: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION (20 points)

The following problem was Problem 3, Quiz 3, 1998.

A radiation-dominated universe behaves differently from a matter-dominated
universe because the pressure of the radiation is significant. In this problem we
explore the role of pressure for several fictitious forms of matter.

(a) (10 points) For the first fictitious form of matter, the mass density ρ decreases
as the scale factor R(t) grows, with the relation

ρ(t) ∝ 1
R5(t)

.

What is the pressure of this form of matter? [Hint: the answer is proportional
to the mass density.]

(b) (5 points) Find the behavior of the scale factor R(t) for a flat universe dom-
inated by the form of matter described in part (a). You should be able to
determine the function R(t) up to a constant factor.

(c) (5 points) Now consider a universe dominated by a different form of fictitious
matter, with a pressure given by

p =
1
6
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1
Rn(t)

.

Find the power n.



8.286 QUIZ 3 REVIEW PROBLEMS, SPRING 2004 p. 7

PROBLEM 5: DID YOU DO THE READING?

The following problem was Problem 1 on Quiz 3, 2000, where it was worth 25 points.
It is based on Chapters 4 and 5 of Rowan-Robinson’s book, 3rd edition. For 2004 you
should be able to answer parts (a), (c), and (e) on the basis of reading in Weinberg’s
book. You should also understand the physics, although possibly not the vocabulary,
of parts (b) and (d).

(a) (5 points) What does Birkhoff’s theorem state?

(i) A uniform medium outside a spherical cavity has no gravitational effect
inside the cavity.

(ii) A redshifted version of a blackbody spectrum remains a blackbody spec-
trum, but at a lower temperature.

(iii) The universe is homogeneous and isotropic.

(iv) The effect of a uniform gravitational field is indistinguishable from the
effect of a uniform acceleration.

(v) A Hubble flow is the only global motion allowed in a completely homoge-
neous and isotropic universe.

(b) (5 points) Two special-case cosmological models are the “Milne model” and
the “Einstein de-Sitter model”. Pick one of them and briefly describe its dis-
tinguishing characteristics from other common models (be sure in your answer
to specify which one you are describing).

(c) (5 points) The observation that only about one-quarter of the primordial gas
in the universe is helium means that the Big Bang appears to have produced
about seven times as many protons as neutrons. What can help explain this
asymmetry?

(i) The very energetic conditions of the early universe forced the GUT proton
decay process to run in reverse.

(ii) The early population of muons preferentially decayed into protons, boost-
ing their density.

(iii) The neutron is heavier than the proton, causing the weak reaction rates
to shift as the temperature dropped.

(iv) The rest of the neutrons formed into neutron stars, and thus aren’t ob-
served in the primordial gas at all.

(v) The same asymmetry which gave us more particles than antiparticles also
produced more down quarks than up quarks.

(d) (5 points) What causes the dipole anisotropy in the cosmic microwave back-
ground radiation?
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(e) (5 points) Place the following events in order in the standard Big Bang picture,
from earliest to latest. A valid answer would read, for instance: v, iv, iii, ii, i.

(i) Primordial nucleosynthesis

(ii) Decoupling of electron neutrinos

(iii) Quark confinement

(iv) Recombination

(v) Muon annihiliation

∗PROBLEM 6: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002. Although it is couched in
the language of Lecture Notes 13, the physics is really the same as the pressure
calculations in Lecture Notes 7, so a modified form of this problem would be fair for
the coming quiz.

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.
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(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)

∗PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF
(15 points)

Consider a universe that contains nonrelativistic matter, radiation, vacuum en-
ergy, and the same mysterious stuff that was introduced in the previous problem.
Since the mass density of mysterious stuff falls off as 1/

√
V , where V is the volume,

it follows that in an expanding universe the mass density of mysterious stuff falls
off as 1/R3/2(t).

Suppose that you are given the present value of the Hubble parameter H0,
and also the present values of the contributions to Ω ≡ ρ/ρc from each of the
constituents: Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy
density), and Ωms,0 (mysterious stuff). Our goal is to express the age of the universe
t0 in terms of these quantities.

(a) (8 points) Let x(t) denote the ratio

x(t) ≡ R(t)
R(t0)

for an arbitrary time t. Write an expression for the total mass density of the
universe ρ(t) in terms of x(t) and the given quantities described above.

(b) (7 points) Write an integral expression for the age of the universe t0. The
expression should depend only on H0 and the various contributions to Ω0 listed
above (Ωm,0 , Ωr,0 , etc.), but it might include x as a variable of integration.

Extra Credit for Super-Sharpies (no partial credit): For 5 points extra credit, you
can calculate the angular diameter ∆θ of the image of a spherical object at
redshift z which had a physical diameter w at the time of emission. You should
assume that Ωtot < 1, and also that ∆θ 	 1. The calculation is to be carried
out for the same model universe described above.
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PROBLEM 8: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various
important events in the history of the universe are believed to have taken place.
The times are measured from the instant of the big bang. To avoid ambiguities,
you are asked to choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without
explanation. The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;

(c) the time of the phase transition predicted by grand unified theories, which
takes place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted
from a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to
occur when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one an-
swer will be acceptable. You are asked, however, to give ONLY ONE of the
acceptable answers.

PROBLEM 9: DID YOU DO THE READING? (30 points)

The following problem was Problem 1, Quiz 4, 2000. For 2004, you should be able
to answer parts (a), (d), and (e).

(a) (5 points) When orbital velocities of stars in spiral galaxies are measured,
we find that they are mostly constant over a large range in radius. What
explanation is usually given to understand these flat rotation curves?
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(i) The density waves producing the spiral arms perturb the stellar orbits.

(ii) A flat rotation curve is exactly what you’d expect from Kepler’s laws
applied to the observed mass profile of spiral galaxies.

(iii) The measurements are dominated by bright young stars in the spiral arms,
so we’re mistaking the wave velocity of the arms for the rotation of the
galaxy as a whole.

(iv) Spiral galaxies contain a halo of dark matter in addition to their normal
disk mass.

(v) The stellar orbits aren’t circular, so we’re measuring stars with more and
more elliptical orbits at larger radii.

(b) (5 points) Briefly describe the distinguishing characteristics of the Eddington-
Lemâıtre cosmological models. (Hint: they are related to Einstein’s static
closed universe model.)

(c) (5 points) What is the Jeans length?

(i) The size at which the sound-crossing time is equal to the age of the universe

(ii) The minimum size of density fluctuations which are unstable to gravita-
tional collapse

(iii) The size of the first peak in the power spectrum of the cosmic microwave
background fluctuations

(iv) The size where we expect the effects of quantum gravity to have a signifi-
cant influence

(v) Approximately equal to the Jeans waist size

(d) (5 points) By what factor does the lepton number per comoving volume of the
universe change between temperatures of kT = 10 MeV and kT = 0.1 MeV?
You should assume the existence of the normal three species of neutrinos for
your answer. [Note: this question is based on Chapter 4 of Weinberg, and so it
would not be appropriate for Quiz 3 of 2002.]

(e) (5 points) Measurements of the primordial deuterium abundance would give
good constraints on the baryon density of the universe. However, this abun-
dance is hard to measure accurately. Which of the following is NOT a reason
why this is hard to do? [Note: this question is based on Chapter 4 of Weinberg,
and so it would not be appropriate for Quiz 3 of 2002.]

(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes,
so almost none of the primordial deuterium produced in the Big Bang is
still present.
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(ii) The deuterium abundance in the Earth’s oceans is biased because, being
heavier, less deuterium than hydrogen would have escaped from the Earth’s
surface.

(iii) The deuterium abundance in the Sun is biased because nuclear reactions
tend to destroy it by converting it into helium-3.

(iv) The spectral lines of deuterium are almost identical with those of hydrogen,
so deuterium signatures tend to get washed out in spectra of primordial
gas clouds.

(v) The deuterium abundance is so small (a few parts per million) that it
can be easily changed by astrophysical processes other than primordial
nucleosynthesis.

(f) (5 points) Give three examples of hadrons.

PROBLEM 10: NEUTRON-PROTON RATIO AND BIG-BANG NU-
CLEOSYNTHESIS (20 points)

The following problem was on Quiz 4, 2000, except that part (c) has been modified.
For 2004 a problem about nucleosynthesis, like this one, would be considered a dif-
ficult problem, since the topic was covered only in your readings of Weinberg. If I
were to use a question like this on the coming quiz, I would probably try to make it
easier by adding some hints.

(a) (5 points) When the temperature of the early universe was 5 × 1010 K, what
was the ratio of neutrons to protons? You may assume thermal equilibrium,
and that the mass difference is given by (mn −mp)c2 = 1.293 MeV.

Questions (b), (c), and (d) all refer to calculations that describe a hypothetical
world, which differs from the real world in a specified way. In each case you are
asked about the calculation of the predicted helium abundance for this hypothetical
world. Each of these three parts are to be answered independently; that is, in each
part you are to consider a hypothetical world that differs from the real world only
by the characteristics stated in that part.

(b) (5 points) Suppose the proton-neutron mass difference were larger than the
actual value of 1.293 MeV/c2. Would the predicted helium abundance be
larger or smaller than in the standard calculation? Explain your answer in a
sentence, or in a few sentences.

(c) (5 points) Suppose that the nucleosynthesis calculations were carried out with
an electron mass given by mec

2 = 1 KeV, instead of the physical value of
0.511 MeV. This change would affect the production of helium in several ways.
Describe one way in which the helium production process would be affected,
and explain in a few sentences whether this change would increase or decrease
the predicted helium abundance.
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(d) (5 points) Suppose, due to some significant difference in the nuclear reaction
rates, that nucleosynthesis occurred suddenly at a temperature of 5×1010 K. In
that case, what would be the predicted value of Y , the fraction of the baryonic
mass density of the universe which is helium?
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SOLUTIONS
PROBLEM 1: NUMBER DENSITIES IN THE COSMIC BACK-

GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given
by

n = g∗
ξ(3)
π2

(
kT

h̄c

)3

For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec




=⇒
(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) � 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3
4
=

3
2

per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the
Pauli exclusion principle. So for three species of neutrinos one has

g∗ν =
9
2
.

Using the result

T 3
ν =

4
11
T 3

γ

from Problem 8 of Problem Set 3 (2000), one finds

nν =
(
g∗ν
g∗γ

)(
Tν

Tγ

)3

nγ

=
(
9
4

)(
4
11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).
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PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to
know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzman constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
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number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy

per particle is unaffected — the energy density and the total number density

are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.

This result can be understood as a natural consequence of the fact that fermions

must obey the exclusion principle, while bosons do not. Large numbers of

bosons can therefore collect in the lowest energy levels. In fermion systems,

on the other hand, the low-lying levels can accommodate at most one particle,

and then additional particles are forced to higher energy levels.
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(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 3: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So

z

Then

Answer = 3
ζ(3)
π2
×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
Ṙ

R

)2

=
8π
3
Gρ .

During the radiation-dominated era R(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

Ṙ

R
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4× 7
8 = 3 1

2
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gtot = 14
1
4

.

Solving for kT in terms of ρ gives

kT =
[
30
π2

1
gtot

h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1
1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/R. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)R3(t)
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where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γR

3(t) = grestT
3(t)R3(t) .

So,
Tγ

T (t)
=
(
grest

gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν

Tγ
=
(
2
9

)1/3

.

PROBLEM 4: THE EFFECT OF PRESSURE ON COSMOLOGICAL
EVOLUTION

(a) This problem is answered most easily by starting from the cosmological formula
for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the
energy conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2R3

)
= −p d

dt

(
R3
)
. (1)

Setting
ρ =

α

R5
(2)

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

R2

)
= −p d

dt

(
R3
)
,

which implies

−2αc
2

R3

dR

dt
= −3pR2 dR

dt
.

Thus

p =
2
3
αc2

R5
=

2
3
ρc2 .
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For those students who could not reconstruct Eq. (1) or some equivalent equa-
tion from memory, the conservation of energy equation could be derived from
the formulas for cosmological evolution on the front of the exam:

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2
(3)

R̈ = −4π
3
G

(
ρ+

3p
c2

)
R . (4)

By rewriting Eq. (3) as

Ṙ2 =
8π
3
GρR2 − kc2 ,

the time derivative becomes

2Ṙ R̈ =
8π
3
Gρ̇R2 +

16π
3

GρRṘ .

This equation can be solved for ρ̇ to give

ρ̇ =
3

4πG
Ṙ R̈

R2
− 2

Ṙ

R
ρ .

Using Eq. (4) to replace R̈, one finds

ρ̇ = − Ṙ
R

(
ρ+

3p
c2

)
− 2

Ṙ

R
ρ = −3 Ṙ

R

(
ρ+

p

c2

)
. (5)

It is easy to show that Eq. (5) is equivalent to Eq. (1), but it is not necessary
to do so. The question can be answered directly from Eq. (5), by substituting
Eq. (2) and manipulating.

(b) For a flat universe, Eq. (3) reduces to

(
Ṙ

R

)2

=
8π
3
Gρ .

Using Eq. (2), this implies that

Ṙ =
β

R3/2
,

for some constant β. Rewriting this as

R3/2 dR = β dt ,
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we can integrate the equation to give
2
5
R5/2 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of
the time variable t. Using the standard big bang convention that R = 0 when
t = 0, the constant of integration vanishes. Thus,

R ∝ t2/5 . (6)

The arbitrary constant of proportionality in Eq. (6) is consistent with the
wording of the problem, which states that “You should be able to determine
the function R(t) up to a constant factor.” Note that we could have expressed
the constant of proportionality in terms of the constant α in Eq. (2), but there
would not really be any point in doing that. The constant α was not a given
variable. If the comoving coordinates are measured in “notches,” then R is
measured in meters per notch, and the constant of proportionality in Eq. (6)
can be changed by changing the arbitrary definition of the notch.

(c) Combining Eq. (1) with p = 1
6ρc

2, one has

d

dt

(
ρc2R3

)
= −1

6
ρc2

d

dt

(
R3
)
,

or equivalently
d

dt

(
ρR3

)
+

1
6
ρ
d

dt

(
R3
)
= 0 . (7)

There are various ways to proceed from here. Since the problem told us that

ρ =
const
Rn

,

the most straightforward approach would be to use this expression to replace
ρ in Eq. (7), and then solve the equation for n. A cleverer approach would be
to multiply Eq. (7) by R1/2, and then rewrite it as

d

dt

(
ρR7/2

)
= 0 ,

from which one can see immediately that

ρ(t) ∝ 1
R7/2(t)

,

and therefore

n = 7/2 .
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PROBLEM 5: DID YOU DO THE READING?

The solutions to this problem were written by Edward Keyes.

(a) Birkhoff’s theorem

Birkhoff’s theorem states that “the gravitational effect of a uniform medium
external to a spherical cavity is zero.” This is a theorem from general relativity,
and necessary to know in order to extrapolate our Newtonian cosmology results to
the whole universe: it might have been the case that the global curvature of space
would have interfered with our Newtonian results. The other choices in the question
were generally true statements from other areas of cosmology.

(b) Special-case cosmological models

The Einstein-de Sitter model is not, as some answered, Einstein’s original,
static universe with a cosmological constant. Instead, this model describes a flat
(k = 0) universe with a critical density of ordinary matter (ρ = ρc). As we showed
earlier in the class, this means that its scale factor grows as R(t) ∝ t2/3.

The Milne model describes an empty universe: it is open (k = −1) and has no
matter or radiation in it (ρ = 0). Its scale factor grows linearly with time, since
there’s no matter to slow down the Hubble expansion. (One normally includes
“test” particles in the description of the Milne universe, so that we can talk about
their motion. But the mass of these test particles is taken to be arbitrarily small,
so we completely ignore any gravitational field that they might produce.)

As an interesting aside, we might ask why the Milne model has k = −1. Since
there is no matter, there shouldn’t be any general relativity effects, and so we would
ordinarily expect that the metric should be the normal, flat, Minkowski special
relativity metric. Why is this space hyperbolic instead?

The answer is an illustration of the subtleties that can arise in changing coor-
dinate systems. In fact, the metric of the Milne universe can be viewed as either
a flat, Minkowski metric, or as the negatively curved metric of an open universe,
depending on what coordinate system one uses. If one uses coordinates for time
and space as they would be measured by a single inertial observer, then one finds a
Minkowski metric; in this way of describing the model, it is clear that special rel-
ativity is sufficient, and general relativity plays no role. In this coordinate system
all the test particles start at the origin at time t = 0, and they move outward from
the origin at speeds ranging from zero, up to (but not including) the speed of light.

On the other hand, we can describe the same universe in a way that treats
all the test particles on an equal footing. In this description we define time not
as it would be measured by a single observer, but instead we define the time at
each location as the time that would be measured by observers riding with the test
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particles at that location. This definition is what we have been calling “cosmic
time” in our description of cosmology. One can also introduce a comoving spatial
coordinate system that expands with the motion of the particles. With a particular
definition of these spatial coordinates, one can show that the metric is precisely
that of an open Robertson-Walker universe with R(t) = t.

The derivation is left as an exercise for the curious student. You should find
that the normal special-relativistic time dilation and Lorentz contraction formulas,
when applied to the velocities of a Hubble expansion to construct the comoving
coordinate system, introduce the negative curvature to the metric.

(c) Neutron-proton ratio

In the early universe, neutrons and protons first formed when the temperature
dropped far enough to keep them from being torn apart into their constituent
quarks. This happened around a microsecond after the Big Bang, and at this
time there were roughly equal numbers of neutrons and protons.

In fact, neutrons could be converted into protons and vice-versa in several weak
reactions with electrons, positrons, and neutrinos:

n+ νe ←→ p + e− , n+ e+ ←→ p+ ν̄e , n←→ p+ e− + ν̄e

Since these are weak-force reactions, though, their rates are strongly dependent
on the temperature. Once T drops below 1010 K, the neutrinos stop interacting
with matter, and these reactions freeze, except for the forward direction of the
third reaction, which describes free neutron decay (this process has a half-life of 15
minutes, so it doesn’t affect things very much).

Before the freeze-out, which essentially fixes the neutron/proton ratio, the re-
action rates shift as the temperature changes. The neutron is 1.3 MeV heavier than
the proton, while the mass/energy of an electron is only 0.5 MeV. This means that
the conversion of a neutron to a proton and electron is energetically favorable, while
the reverse process costs energy. As the temperature drops so that kT is of the or-
der of 1 MeV, these energy differences become significant compared to the available
free thermal energy, and the reaction rates shift so that thermal equilibrium favors
protons over neutron by an increasing margin.

When the weak reactions freeze out, this unequal ratio of neutrons and protons
is preserved. Since essentially all of the neutrons end up in helium after nucleosyn-
thesis, this also fixes the ratio of hydrogen to helium formed by the Big Bang.
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(d) The dipole anisotropy

When we look at the temperature of the cosmic microwave background ra-
diation, to first order it appears uniform across the sky. When we look closer,
though, we see that it is hotter in one direction and smoothly shades into cooler
in the opposite direction, at a level of about one part in 1000. This is the dipole
anisotropy.

The explanation is quite simple: the Earth is not at rest with respect to the
cosmic background radiation. The motion of our Sun around the center of the
Galaxy, and the motion of our Galaxy towards the Virgo Cluster, etc., all give us a
net velocity of around 600 km/sec, which causes us to see blueshifted CMB photons
in one direction, and redshifted ones in the opposite direction. As we learned earlier
in the class, a redshifted blackbody spectrum just shifts its temperature, so we see
the effects of this motion as a smooth temperature variation across the sky.

(e) Events in the early universe

The correct order is:

(iii) Quark confinement, at t ∼ 10−6 sec.

(v) Muon annihilation, at t ∼ 10−4 sec.

(ii) Decoupling of electron neutrinos, at t ∼ 1 sec.

(i) Primordial nucleosynthesis, at t ∼ 102 sec.

(iv) Recombination, at t ∼ 105 years.

A surprising number of students did not realize that recombination is the final
stage of the early universe. After this event takes place, the universe is transparent
to photons and the temperature has dropped to just a few thousand K. Nothing
interesting happens after this until the processes of structure formation begins.

PROBLEM 6: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2

∆V
V

= u0

(
1− 1

2
∆V
V

)
.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, SPRING 2004 p. 26

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V
V

)
V

(
1 +

∆V
V

)
= U0

(
1 +

1
2
∆V
V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V
V

U0 .

(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V
V

U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0

V
= − 1

2
u0 .

PROBLEM 7: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF

(a) The critical density ρc is defined as that density for which k = 0, where the
Friedmann equation from the front of the exam implies that

H2 =
8π
3
Gρ− kc2

R2
.

Thus the critical density today is given by

ρc =
3H2

0

8πG
.

The mass density today of any species X is then related to ΩX,0 by

ρX,0 = ρcΩX,0 =
3H2

0ΩX,0

8πG
.
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The total mass density today is then expressed in terms of its four components
as

ρ0 =
3H2

0

8πG
[Ωm,0 +Ωr,0 + Ωv,0 + Ωms,0] .

But we also know how each of these contributions to the mass density scales
with x(t): ρm ∝ 1/x3, ρr ∝ 1/x4, ρv ∝ 1, and ρms ∝ 1/

√
V ∝ 1/x3/2. Inserting

these factors,

ρ(t) =
3H2

0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2

]
.

(b) The Friedmann equation then becomes(
ẋ

x

)2

=
8πG
3

3H2
0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2

]
− kc2

R2
.

Defining

H2
0Ωk,0 = − kc2

R2(t0)
,

so

− kc2

R2(t)
= − kc2

R2(t0)
1
x2

=
H2

0Ωk,0

x2
,

and then the Friedmann equation becomes(
ẋ

x

)2

= H2
0

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2
+

Ωk,0

x2

]
.

Applying this equation today, when ẋ/x = H0, one finds that

Ωk,0 = 1− Ωm,0 − Ωr,0 − Ωv,0 − Ωms,0 .

Rearranging the equation for (ẋ/x)2 above,

H0 dt =
dx

x
√

Ωm,0

x3 + Ωr,0

x4 + Ωv,0 +
Ωms,0

x3/2 + Ωk,0

x2

.

The age of the universe is found by integrating over the full range of x, which
starts from 0 when the universe is born, and is equal to 1 today. So

t0 =
1
H0

∫ 1

0

dx

x
√

Ωm,0

x3 + Ωr,0

x4 + Ωv,0 +
Ωms,0

x3/2 + Ωk,0

x2

.
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Extra Credit for Super-Sharpies (no partial credit):

Since Ωtot < 1, we use the Robertson-Walker open universe form

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{

dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have started with the general form from the front of the exam, and
replaced k by −1. To discuss the radial transmission of light rays it is useful
to define a new radial coordinate

r = sinhψ ,

so
dr = coshψ dψ =

√
1 + r2 dψ ,

where I used the identity that cosh2 ψ = 1 + sinh2 ψ. The metric can then be
rewritten as

ds2 = −c2 dτ 2 = −c2 dt2 +R2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

Light rays then travel with dτ 2 = 0, so

dψ
dt

=
c

R(t)
.

If a light ray leaves the object at time te and arrives at Earth today, then it
will travel an interval of ψ given by

ψ =
∫ t0

te

c

R(t′)
dt′ .

We will need to know ψ, but we don’t know either te or R(t). So we need to
manipulate the right-hand side of the above equation to express it in terms of
things that we do know. Changing integration variables from t′ to x, where
x = R(t′)/R(t0), one finds dx = ẋ dt′, and then

ψ =
∫ 1

xe

c

R(t0)
1
x

dx
ẋ

.

Using H = ẋ/x,

ψ =
c

R(t0)

∫ 1

xe

dx
x2H

.
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Now use the formula for H = ẋ/x from part (b), so

ψ =
c

R(t0)H0

∫ 1

xe

dx

x2

√
Ωm,0

x3 + Ωr,0
x4 + Ωv,0 +

Ωms,0

x3/2 + Ωk,0
x2

.

Here

xe =
R(te)
R(t0)

=
1

1 + z
,

and the coefficient in front of the integral can be evaluated using the Friedman
equation for k = −1:

H2
0 =

8π
3
Gρ0 +

c2

R2(t0)
= H2

0Ω0 +
c2

R2(t0)
,

so
c2

R2(t0)H2
0

= 1− Ω0 = Ωk,0 .

Finally, then, the expression for ψ can be written

ψ =
√

Ωk,0

∫ 1

xe

dx

x2

√
Ωm,0

x3 + Ωr,0
x4 + Ωv,0 +

Ωms,0

x3/2 + Ωk,0
x2

,

where xe is given by the boxed equation above.

Once we know ψ, the rest is straightforward. We draw a picture in comoving
coordinates of the light rays leaving the object and arriving at Earth:
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In this picture ∆θ is the angular size that would be measured. Using the dθ2

part of the metric,

ds2 = R2(t) sinh2 ψ dθ2 ,

we can relate w, the physical size of the object at the time of emission, to ∆θ:

w = R(te) sinhψ∆θ .

To evaluate R(te) we can use

R(te) = xeR(t0) =
xec

H0

√
Ωk,0

.

Finally, then,

∆θ =
wH0

√
Ωk,0

xec sinhψ
,

where ψ is given by the boxed equation above.

PROBLEM 8: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”,

so that free neutron decay becomes the only mechanism that can interchange

protons and neutrons. From this time onward, the relative number of protons

and neutrons is no longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions

are no longer initiated.]

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1
sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times

higher. In the radiation-dominated era T ∝ R−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as

200,000 years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]
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PROBLEM 9: DID YOU DO THE READING? (30 points)

(a) The correct answer, of course, is (iv). The other items are supposed to be
plausible-sounding but flawed explanations. See Rowan-Robinson section 6.4,
pages 102-3.

(b) The key fact is that they have a critical value for the cosmological constant,
leading to an asymptotic period of near-static evolution. Technically one as-
ymptotes to the Einstein static model at infinite negative time and then ex-
pands (this has no Big Bang), and the other asymptotes to the Einstein case
at infinite positive time after a Big Bang and initial period of expansion. See
Rowan-Robinson section 8.2, pages 133-4.

(c) The correct answer is, of course, (ii). Answer (i) is intended to be evil and
tricky, but the others are merely wrong, and (v) is just a joke to compensate
for confusing the students with (i). See Rowan-Robinson section 6.1, pages
97-9.

(d) This is a total trick question. Lepton number is, of course, conserved, so the
factor is just 1. See Weinberg chapter 4, pages 91-4.

(e) The correct answer is (i). The others are all real reasons why it’s hard to
measure, although Weinberg’s book emphasizes reason (v) a bit more than
modern astrophysicists do: astrophysicists have been looking for other ways
that deuterium might be produced, but no significant mechanism has been
found. See Weinberg chapter 5, pages 114-7.

(f) The most obvious answers would be proton, neutron, and pi meson. However,
any of the particles listed as baryons or mesons in Lecture Notes 11 would be
correct. See Weinberg chapter 7, pages 136-8.

PROBLEM 10: NEUTRON-PROTON RATIO AND BIG-BANG NU-
CLEOSYNTHESIS

(a) In thermal equilibrium, the ratio of neutrons to protons is given by a Boltzmann
factor,

nn

np
= e−∆m c2/kT ,

where ∆m = (mn−mp). For ∆mc2 = 1.293×106 eV, k = 8.617×10−5 eV/K,
and T = 5× 1010 K, this gives

nn

np
= exp

{−1.293× 106/(8.617× 10−5 × 5× 1010)
}
= 0.741 .
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Caveat (for stat mech experts): The above formula would be a precise con-
sequence of statistical mechanics if the neutron and proton were two possible
energy levels of the same system. In this case one would describe the system
using the canonical ensemble, which implies that the probability of the system
existing in any specific state i is proportional to exp(−Ei/kT ), where Ei is the
energy of the state. However, the neutron and proton are not really different
energy levels of the same system, because the conversion between neutrons and
protons involves other particles as well; a sample conversion reaction would be

n+ νe ←→ p+ e− ,

where νe is the electron neutrino, and e− is the electron. This means that
if the universe contained a very large density of electron neutrinos, then n-
νe collisions would occur more frequently, and the reaction would be driven
in the forward direction. Thus, a large density of electron neutrinos would
lead to a lower ratio of neutrons to protons than the Boltzmann factor given
above. Similarly, if the universe contained a large density of electrons, then
the reaction would be driven in the reverse direction, and the ratio of neutrons
to protons would be higher than the Boltzmann factor. A complete statistical
mechanical treatment of this situation would use the grand canonical ensemble,
which describes systems in which the number of particles of a given type can
change by chemical reactions. In this formalism the density of each type of
particle is related to a quantity called the chemical potential µ, where in general
the relationship is given by

n =
g

2π2

∫ ∞

m

(E2 −m2)1/2

exp [(E − µ)/(kT )] ± 1
E dE

where the + sign holds for Fermi particles, the − sign holds for Bose particles,
and the factor g has the same meaning as in Lecture Notes 7. The ratio of
neutrons to protons is then given by

nn

np
= e−(∆m c2+µν−µe)/kT ,

where µν and µe represent the chemical potentials for electron neutrinos and
electrons, respectively. In the early universe, however, the standard theories
imply that the chemical potentials for electrons and neutrinos were both neg-
ligible.

(b) A larger ∆m would mean that the Boltzmann factor described in the previous
answer would be smaller, so that there would be fewer neutrons at any given
temperature. Fewer neutrons implies less helium, since essentially all the neu-
trons that exist when the temperature falls enough for deuterium to become
stable become bound into helium.
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(c) There are at least four effects that occur when the electron mass/energy is
taken as 1 KeV instead of 0.511 MeV:

(i) For the real mass/energy of 0.511 MeV the electron-positron pairs freeze
out before nucleosynthesis, but a mass/energy of 1 KeV would mean that
electron-positron pairs would behave as massless particles throughout the
nucleosynthesis process. Just like adding an extra species of neutrino, this
additional massless particle would mean that the expansion rate would be
larger, since for a flat universe,

H2 =
8π
3
Gρ ,

and

ρ =
u

c2
= g

π2

30
(kT )4

h̄3c5
.

Faster expansion means that the weak interactions “freeze out” earlier,
since the freeze-out point is the time at which the interactions can no longer
maintain equilibrium as the universe expands. An earlier freeze-out means
a higher temperature of freeze-out and hence more neutrons at the time
of freeze-out. In addition, the faster expansion rate means faster cooling,
which means less time before the temperature of nucleosynthesis is reached,
and therefore less time for neutrons to decay. Thus, faster expansion
means more neutrons. Since essentially all the neutrons present when the
deuterium bottleneck breaks are collected into helium, this implies more
helium.

(ii) The most important reactions that keep protons and neutrons in thermal
equilibrium all involve electrons and positrons:

n+ e+ ←→ p+ ν̄e

n+ νe ←→ p+ e− .

If the electron-positron mass/energy were smaller, then the rates of all of
these reactions would be enhanced. The reactions in which an e+ or e−

appears in the initial state will be enhanced by the presence of more e+’s
and e−’s, and the reactions in which they appear in the final state will be
enhanced because a lighter final state is easier to produce. The enhanced
rate for these reactions will keep neutrons and protons in thermal equi-
librium longer, and hence to lower temperatures, and this would decrease
the final abundance of neutrons. Thus this effect will go in the opposite
direction as effect (i), leading to the production of less helium.

(iii) If the electron mass is decreased, then the neutron decay

n −→ p+ e− + ν̄e
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becomes more exothermic, so it will happen more quickly. Thus more
neutrons can decay, leading to less helium.

(iv) As mentioned in (i), lowering the mass/energy of electron-positron pairs
to 1 KeV would mean that their freeze-out would not occur until after
nucleosynthesis is over. In the real case, however, with mec

2 = 0.511 MeV,
the electron-positron pairs start to freeze out at t ≈ 10 sec. The energy
released by this freeze-out heats the photons, protons, and neutrons, and
this extra heat delays the time when the universe cools enough to break the
deuterium bottleneck so that helium production can proceed. The delay
allows more time for the neutrons to decay, resulting in less helium. Since
the freeze-out that occurs for mec

2 = 0.511 MeV results in less helium, the
absence of this freeze-out if mec

2 = 1 KeV would result in more helium.

Since the effects point in different directions, there is no easy way to know what
the net effect will be. I (AHG) tried carrying out a full numerical integration,
using the equations from P.J.E. Peebles, “Primordial helium abundance and
the primordial fireball II,” Astrophysical Journal 146, 542-552 (1966). I found
that the net effect of changing mec

2 to 1 KeV was to produce less helium.
Apparently effects (ii) and (iii) above are the most significant. Of course I did
not expect students to figure this out in doing their problem sets.

(d) Part (a) asked for the ratio of neutrons to protons, so its answer is

A =
nneutron

nproton
.

The fraction of the baryonic mass in neutrons is then

nneutron

nB
=

nneutron

nneutron + nproton
=

nneutron
nproton

nneutron
nproton

+ 1
=

A

1 + A
.

The fraction of the baryonic mass in helium is twice this number, since after
nucleosynthesis essentially all neutrons are in helium, and the mass of each
helium nucleus is twice the mass of the neutrons within it. Thus

Y =
2A

1 + A
.

This gives Y = 0.851.


