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QUIZ 2 SOLUTIONS

PROBLEM 1: EVOLUTION OF MODEL UNIVERSES (30 points)

(a) For an empty universe, the Friedmann equation is

(
Ṙ

R

)2

= −kc2

R2
.

Since the left-hand side cannot be negative, an empty universe cannot have
k > 0, i.e. it cannot be closed.

Now consider k = 0, i.e. a flat universe. In this case the above equation has
the solution

R(t) = R0 ,

where R0 is independent of time. So an empty universe can be flat as long as
it is static.

Finally consider k < 0, i.e. an open universe. From the Friedmann equation we
get

Ṙ =
√
|k|c =⇒ R(t) =

√
|k|ct+ const ,

where the constant of integration const can be set to zero by using the conven-
tion that t = 0 when R(t) = 0. So, an empty universe can be open with a scale
factor that increases linearly with time.

(b)

(i) Nonrelativistic matter: w = 0.

(ii) Relativistic matter: w = 1/3.

(iii) The cosmological constant: w = −1.

(c) The fluid equation is

ρ̇ = −3
Ṙ

R
(1 + w)ρ ,

where we have used the equation of state to express p in terms of ρ. Now
we’re given that ρ ∝ R−b and so ρ̇ ∝ −bR−b−1Ṙ, with the same constant of
proportionality. Plugging these expressions into the fluid equation,

−bR−b−1Ṙ = −3
Ṙ

R
(1 + w)R−b
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=⇒ b = 3(1 + w) .

(d) We can use the Friedmann equation for a flat universe to determine R(t):

(
Ṙ

R

)2

=
8π
3
Gρ .

For ρ ∝ R−b, the above equation can be written as

(
Ṙ

R

)2

∝ R−b .

First consider the case b = 0, for which we find

Ṙ

R
= const = H0 =⇒ dR

R
= H0 dt .

Integrating,

lnR = H0t+ const =⇒ R(t) ∝ eH0t .

Next consider the case b �= 0, for which we find

Ṙ

R
∝ R−b/2 =⇒ Rb/2−1 dR ∝ dt .

Integrating,

Rb/2 ∝ t+ const =⇒ Rb/2 ∝ t =⇒ R(t) ∝ t2/b ,

where again the constant of integration was set to zero by our convention for
choosing the origin of time t.

— Problem and solution written by Vishesh Khemani.
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PROBLEM 2: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (35 points)

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.
The line element therefore reduces to

0 = −c2 dt2 +R2(t)dψ2 .

Rearranging gives (
dψ

dt

)2

=
c2

R2(t)
,

which implies that

dψ

dt
= ± c

R(t)
.

The plus sign describes outward radial motion, while the minus sign describes
inward motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found
by integrating its rate of change:

ψhor =
∫ t

0

c

R(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at
the time t from the origin to ψ = ψhor, which according to the metric is given
by

�phys(t) =
∫ ψ=ψhor

ψ=0

ds =
∫ ψhor

0

R(t)dψ = R(t)
∫ t

0

c

R(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

R(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one
finds

dt

dθ
=
α

c
(1− cos θ) .

Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1 − cos θ)

R(t)
.
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Then using R = α(1− cos θ), as stated in the problem, one has the very simple
result

dψ

dθ
= 1 .

(d) This part is very simple if one knows that ψ must change by 2π before the
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must
also change by 2π. From R = α(1− cos θ), one can see that R returns to zero
at θ = 2π, so this is exactly the lifetime of the universe. So,

Time for photon to return
Lifetime of universe

= 1 .

If it is not clear why ψ must change by 2π for the photon to return to
its starting point, then recall the construction of the closed universe that was
used in Lecture Notes 6. The closed universe is described as the 3-dimensional
surface of a sphere in a four-dimensional Euclidean space with coordinates
(x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system
is constructed on the 3-dimensional surface of the sphere, taking the point
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0
at the north pole, and ψ = π for the antipodal point, (0, 0, 0,−1), which can be
called the south pole. In making the round trip the photon must travel from
the north pole to the south pole and back, for a total range of 2π.

Discussion: In the past (not this year!) some students answered this ques-
tion by saying that the photon would return in the lifetime of the universe,
but they reached this conclusion without considering the details of the motion.
The argument was simply that, at the big crunch when the scale factor returns
to zero, all distances would return to zero, including the distance between the
photon and its starting place. This statement is correct, but it does not quite
answer the question. First, the statement in no way rules out the possibility
that the photon might return to its starting point before the big crunch. Sec-
ond, if we use the delicate but well-motivated definitions that general relativists
use, it is not necessarily true that the photon returns to its starting point at
the big crunch. To be concrete, let me consider a radiation-dominated closed
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universe—a hypothetical universe for which the only “matter” present consists
of massless particles such as photons or neutrinos. In that case (you can check
my calculations) a photon that leaves the north pole at t = 0 just reaches the
south pole at the big crunch. It might seem that reaching the south pole at
the big crunch is not any different from completing the round trip back to the
north pole, since the distance between the north pole and the south pole is
zero at t = tCrunch, the time of the big crunch. However, suppose we adopt
the principle that the instant of the initial singularity and the instant of the
final crunch are both too singular to be considered part of the spacetime. We
will allow ourselves to mathematically consider times ranging from t = ε to
t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe
what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the
case of the matter-dominated closed universe, such a photon would traverse
a fraction of the full circle that would be almost 1, and would approach 1 as
ε → 0. By contrast, for the radiation-dominated closed universe, the photon
would traverse a fraction of the full circle that is almost 1/2, and it would
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very
different. In the radiation-dominated case, one would say that the photon has
come only half-way back to its starting point.

PROBLEM 3: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

c2 dτ 2 = c2 dt2 −
[
dr2 + r2 (dφ+ ω dt)2 + dz2

]
,

and the metric coefficients are then just read off from this expression:

g11 ≡ grr = −1

g00 ≡ gtt = coefficient of dt2 = c2 − r2ω2

g20 ≡ g02 ≡ gφt ≡ gtφ =
1
2
× coefficient of dφdt = −r2ω2

g22 ≡ gφφ = coefficient of dφ2 = −r2

g33 ≡ gzz = coefficient of dz2 = −1 .

Note that the off-diagonal term gφt must be multiplied by 1/2, because the
expression

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν
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includes the two equal terms g20 dφdt+ g02 dtdφ, where g20 ≡ g02.

(b) Starting with the general expression

d
dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ
dxσ

dτ
,

we set µ = r:
d
dτ

{
grν

dxν

dτ

}
=

1
2
(∂rgλσ)

dxλ

dτ
dxσ

dτ
.

When we sum over ν on the left-hand side, the only value for which grν �= 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

LHS =
d
dτ

(
grr

dx1

dτ

)
=

d
dτ

(
−dr
dτ

)
= −d2r

dτ 2
.

The RHS includes every combination of λ and σ for which gλσ depends on r,
so that ∂r gλσ �= 0. This means gtt, gφφ, and gφt. So,

RHS =
1
2
∂r(c2 − r2ω2)

(
dt
dτ

)2

+
1
2
∂r(−r2)

(
dφ
dτ

)2

+ ∂r(−r2ω) dφdτ
dt
dτ

= −rω2

(
dt
dτ

)2

− r

(
dφ
dτ

)2

− 2rω
dφ
dτ

dt
dτ

= −r
(
dφ
dτ

+ ω
dt
dτ

)2

.

Note that the final term in the first line is really the sum of the contributions
from gφt and gtφ, where the two terms were combined to cancel the factor of
1/2 in the general expression. Finally,

d2r

dτ 2
= r

(
dφ
dτ

+ ω
dt
dτ

)2

.

If one expands the RHS as

d2r

dτ 2
= r

(
dφ
dτ

)2

+ rω2

(
dt
dτ

)2

+ 2rω
dφ
dτ

dt
dτ

,

then one can identify the term proportional to ω2 as the centrifugal force, and
the term proportional to ω as the Coriolis force.
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(c) Substituting µ = φ,

d
dτ

{
gφν

dxν

dτ

}
=

1
2
(∂φgλσ)

dxλ

dτ
dxσ

dτ
.

But none of the metric coefficients depend on φ, so the right-hand side is zero.
The left-hand side receives contributions from ν = φ and ν = t:

d
dτ

(
gφφ

dφ
dτ

+ gφt
dt
dτ

)
=

d
dτ

(
−r2 dφ

dτ
− r2ω

dt
dτ

)
= 0 ,

so

d
dτ

(
r2

dφ
dτ

+ r2ω
dt
dτ

)
= 0 .

Note that one cannot “factor out” r2 , since r can depend on τ . If this equation
is expanded to give an equation for d2φ/dτ 2, the term proportional to ω would
be identified as the Coriolis force. There is no term proportional to ω2, since
the centrifugal force has no component in the φ direction.

(d) If Eq. (1) of the problem is divided by c2dt2, one obtains

(
dτ
dt

)2

= 1− 1
c2

[(
dr
dt

)2

+ r2
(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
]
.

Then using
dt
dτ

=
1(
dτ
dt

) ,
one has

dt
dτ

=
1√√√√1− 1

c2

[(
dr
dt

)2

+ r2
(
dφ
dt

+ ω

)2

+
(
dz
dt

)2
] .

Note that this equation is really just

dt
dτ

=
1√

1− v2/c2
,

adapted to the rotating cylindrical coordinate system.


