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QUIZ 3 SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (20 points)

(a) No, we believe that there is more matter than antimatter in the universe. One
piece of evidence is that the cosmic rays that we observe on earth come from
large distances in our galaxy and are observed to be made up mostly of matter.
Another piece of evidence is that we do not observe the high energy photons
that would be produced by the annihilation of matter and antimatter had they
been present in comparable amounts in the universe.

(b) The deuterium nucleus became stable about three minutes after the big bang
(hence the title of Weinberg’s book). After the deuterium bottleneck was
passed, nucleosynthesis began and the neutrons rapidly became bound into
stable helium nuclei.

(c) If stars and gas were the only matter present, then the orbital speeds would
decrease in the Keplerian form v ∝ 1/

√
R at radii larger than the visible center.

However, we observe that typically the orbital velocity does not fall off at large
radii, indicating the presence of a dark halo which prevents the high-speed stars
from becoming gravitationally unbound.

(d) The location of the first peak depends on the curvature of the universe, and
the fact that it is at l ∼ 200 indicates that the universe is flat.

PROBLEM 2: A NEW SPECIES OF LEPTON (25 points)

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So
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Then

Answer = 3
ζ(3)
π2

×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.

You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
Ṙ

R

)2

=
8π
3

Gρ .

During the radiation-dominated era R(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

Ṙ

R
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3

Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.



8.286 QUIZ 3 SOLUTIONS, SPRING 2004 p. 3

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4× 7
8
= 3 1

2

gtot = 14
1
4

.

Solving for kT in terms of ρ gives

kT =
[
30
π2

1
gtot

h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1
1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
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implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/R. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)R3(t)

where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γ R3(t) = grestT

3(t)R3(t) .

So,
Tγ

T (t)
=
(

grest

gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν

Tγ
=
(
2
9

)1/3

.

PROBLEM 3: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

H2 =

(
Ṙ

R

)2

=
8π
3

Gρ− kc2

R2
.

The critical density is the value of ρ corresponding to k = 0, so

H2 =
8π
3

Gρc .
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Using this expression to replace H2 on the left-hand side of the Friedmann
equation, and then dividing by 8πG/3, one finds

ρc = ρ− 3kc2

8πGR2
.

Rearranging,
ρ− ρc

ρ
=

3kc2

8πGR2ρ
.

On the left-hand side we can divide the numerator and denominator by ρc, and
then use the definition Ω ≡ ρ/ρc to obtain

Ω− 1
Ω

=
3kc2

8πGR2ρ
. (1)

For a matter-dominated universe we know that ρ ∝ 1/R3(t), and so

Ω− 1
Ω

∝ R(t) .

If the universe is nearly flat we know that R(t) ∝ t2/3, so

Ω− 1
Ω

∝ t2/3 .

(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side.
For a radiation-dominated universe we know that ρ ∝ 1/R4(t), so

Ω− 1
Ω

∝ R2(t) .

If the universe is nearly flat then R(t) ∝ t1/2, so

Ω− 1
Ω

∝ t .
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PROBLEM 4: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a
simple form of the Friedmann equation,

H2 =

(
Ṙ

R

)2

=
8π
3

G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term pro-
portional to k has been dropped. Using the fact that ρm ∝ 1/R3(t) and ρΛ =
const, the energy densities on the right-hand side can be expressed in terms of
their present values ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ R(t)
R(t0)

,

one has (
ẋ

x

)2

=
8π
3

G
(ρm,0

x3
+ ρΛ

)

=
8π
3

Gρc,0

(
Ωm,0

x3
+ ΩΛ,0

)

= H2
0

(
Ωm,0

x3
+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡ ρm,0

ρc,0
; ΩΛ,0 ≡ ρΛ

ρc,0
,

and
H2

0 =
8π
3

Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0

x3
+ ΩΛ,0 ,

which in turn implies that

dt =
1
H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.
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Using the fact that x changes from 0 to 1 over the life of the universe, this
relation can be integrated to give

t0 =
∫ t0

0

dt =
1
H0

∫ 1

0

dx

x
√

Ωm,0

x3 + ΩΛ,0

.

The answer can also be written as

t0 =
1
H0

∫ 1

0

xdx√
Ωm,0x + ΩΛ,0x4

or

t0 =
1
H0

∫ ∞

0

dz
(1 + z)

√
Ωm,0(1 + z)3 + ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange
of the limits of integration: x = 0 corresponds to z = ∞, and x = 1 corresponds
to z = 0.

Your answer should look like one of the above boxed answers. You were not
expected to complete the numerical calculation, but for pedagogical purposes
I will continue. The integral can actually be carried out analytically, giving

∫ 1

0

xdx√
Ωm,0x+ ΩΛ,0x4

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1
H0

=
9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1
H0

= 15.043× 109 yr .
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Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) Having done part (a), this part is very easy. The dynamics of the universe is
of course the same, and the question is only slightly different. In part (a) we
found the amount of time that it took for x to change from 0 to 1. The light
from the quasar that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
R(tobserved)
R(temitted)

.

Using the expression for dt from part (a), the amount of time that it took the
universe to expand from x = 0 to x = 1/(1 + z) is given by

te =
∫ te

0

dt =
1
H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 +ΩΛ,0

.

Again one could write the answer other ways, including

t0 =
1
H0

∫ ∞

z

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0x3

max +
√

ΩΛ,0 x
3/2
max√

Ωm

)
.
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Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321

H0
= 0.9509× 109 yr .

So again the SDSS people were right.

(c) To find the physical distance to the quasar, we need to figure out how far light
can travel from z = 5.82 to the present. Since we want the present distance,
we multiply the coordinate distance by R(t0). For the flat metric

ds2 = −c2 dτ 2 = −c2dt2 +R2(t)
{
dr2 + r2(dθ2 + sin2 θ dφ2)

}
,

the coordinate velocity of light (in the radial direction) is found by setting
ds2 = 0, giving

dr
dt

=
c

R(t)
.

So the total coordinate distance that light can travel from te to t0 is

 c =
∫ t0

te

c

R(t)
dt .

This is not the final answer, however, because we don’t explicitly know R(t).
We can, however, change variables of integration from t to x, using

dt =
dt
dx

dx =
dx
ẋ

.

So

 c =
c

R(t0)

∫ 1

xe

dx
x ẋ

,

where xe is the value of x at the time of emission, so xe = 1/(1+ z). Using the
equation for ẋ from part (a), this integral can be rewritten as

 c =
c

H0R(t0)

∫ 1

1/(1+z)

dx

x2

√
Ωm,0

x3 +ΩΛ,0

.

Finally, then

 phys,0 = R(t0)  c =
c

H0

∫ 1

1/(1+z)

dx

x2

√
Ωm,0

x3 + ΩΛ,0

.
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Alternatively, this result can be written as

 phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x + ΩΛ,0 x4

,

or by changing variables of integration to obtain

 phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic
form, so far as I know. Integrating numerically,

∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

 phys,0 = 27.23 light-yr .

Right again.

(d)  phys,e = R(te) c, so

 phys,e =
R(te)
R(t0)

 phys,0 =
 phys,0

1 + z
.

Numerically this gives

 phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0  phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.
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Then

v

c
=
∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.


