

 actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, and 2004. The
 100 points for the full quiz.

 Except for a few parts which are clearly marked, they are all problems that I

PURPOSE: These review problems are not to be handed in, but are being made may also recur on the upcoming quiz.
 Problems 2, 4, 7, 12, 14, 15, and 18. The starred problems do not include any starred problems are the ones that I recommend that you review most carefully: or from the starred problems from this set of Review Problems. The

 Notes 3, 4, and 5; Problem Sets 1 and 2; Weinberg, Chapters 1-5, Ryden,
QUIZ COVERAGE: Lecture Notes 1 (sections on the Doppler shift only); Lecture Chapters 4 and 5. NEW READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, QUIZ DATE: Tuesday, October 18, 2005

Ł ZIbO yod Siatcoud mingy

Open $(\Omega<1)$:

$=\alpha(\cosh \theta-1)$
$\alpha \equiv \frac{4 \pi}{3} \frac{G \rho R^{3}}{\kappa^{3 / 2} c^{2}}$
$\kappa \equiv-k$.
$\frac{R}{\sqrt{\kappa}}=\alpha(\cosh \theta-1)$,
where $\alpha \equiv \frac{4 \pi}{3} \frac{G \rho R^{3}}{\kappa^{3 / 2} c^{2}}$ Closed $(\Omega>1)$:
$:\left(\mathrm{I}={ }^{\circ} \mathrm{d} / \mathrm{d} \equiv \mho\right)$ Per 2

$\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{R^{2}}$
$\frac{4 \pi}{3} G \rho R$
$\frac{R^{3}\left(t_{i}\right)}{R^{3}(t)} \rho\left(t_{i}\right)$
$R(t) \propto t^{2 / 3}$
$c t=\alpha(\theta-$
$\frac{R}{\sqrt{k}}=\alpha(1$
where $\alpha \equiv$
 EvOLUTION OF A MATTER-DOMINATED
:ZIbO NO N'تА
8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005

ло '\%I पечд әлош $К \mathrm{q}$ мол. (t) does the horizon distance

 (sмолле имелр-риеч 孔о

 :әsıəл!̣un әЧ7
 based on the study of $2,18,180$, or 1,800 galaxies?
 ¿xx stu!od
$\varepsilon \cdot d$度

 b) When the sky is very clear (as it almost never is in Boston), one can see a band

8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005
this hypothesis.
(e
 other cosmological parameters, does not change with time, so $H(t)=H_{0}$. Find

 but the steady-state theory reconciles the expansion with a steady-state density of

 the universe until the cosmic background radiation was discovered and its properties

 (squiod

 (iv) the energy density of the radiation

 (i) the average distance between photons The word "size" will be interpreted to mean linear size, not volume.) universe," or "inversely proportional to the square of the size of the universe". answers should resemble statements such as "proportional to the size of the the following quantities varied as the size of the universe has changed? (Your background radiation expanded freely. Since recombination, how have each of of the background radiation. After this process, known as "recombination," the combined to form neutral atoms, which interact very weakly with the photons
 With what institution were they affiliated?

¿\%L әшеs әчł Кq молі (!!!!)
(ii) grow by less than 1%, or
8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005

 sun to pass through a slit and then through a glass prism. The light was spread a) In 1814-1815, the Munich optician Joseph Frauenhofer allowed light from the
 :966I 'I z!nठ' 'I walqoul spm walqoud buinollof a ψ_{L}

 your answer in terms of all or some of the variables v, z (the redshift of the what redshift z_{J} would we observe the light coming from this jet? Express jet has traveled from the galaxy is so small that it can be neglected. With is comparable to the speed of light c. Assume, however, that the distance the directly towards Earth with a speed v, measured relative to the galaxy, which expansion. Within the galaxy a supernova explosion has hurled a jet of material (10 points) Suppose that the distant object is a galaxy, moving with the Hubble ['mof $\kappa 6$ иəиว

 the earth today? Express your answer in terms of P, H_{0}, z, and γ. [Energy

d) (10 points) At the time of emission, the distant object had a power output P ८ pue ' $z{ }^{\text {‘ }} 0 \mathrm{H}$ fo uoṭəung e e
(10 points) Express the present value of the physical distance to the object as and observation of the light.

b) (5 points) Find the "look-back" time as a function of z and t_{0}. The look-back

 the light that we are currently receiving was emitted by a distant object. In
a) (5 points) Let t_{0} denote the present time, and let t_{e} denote the time at which

$\angle 7 q=(7) Y$

that the Robertson-Walker scale factor behaves as

TVOSONの NV HLIM GSGGAIN LVTA YGHLONV : L NGTGOUd *

 -(8u!̣ıeәdde

 - uо!̣ел.әзqо

$1 / 1^{7 q}=(7) y$

Robertson-Walker scale factor that behaves as The following problem was Problem 3, Quiz 2, 1988:
Consider a flat universe filled with a new and peculiar form of matter, with a

The following problem was Problem 3, Quiz 2, 1988: NOIL

 L d

c and therefore is not appropriate for Quiz 1 of this year.]

 radiation that bathes the clouds.

 - umxұәәds $К$ poq

 -pəлıәяqо $\kappa_{\text {โұәәаир }}$
 L (!
 Some of the earliest measurements of the cosmic background radiation were in 1923, or by Walter Baade and Allan Sandage in the 1950s?

6 d

(iv) Any patch of the night sky would look as bright as the surface of the
8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005

.

a) (5 points) Find the Hubble constant H at an arbitrary time t.

$8 / \varepsilon q=(7) y$

that the Robertson-Walker scale factor behaves as Consider a flat universe which is filled with some peculiar form of matter, so
 (stu!od

Number density $\propto T^{n_{1}}$
density are each proportional to powers of the absolute temperature T. Say

c) The early universe is believed to have been filled with thermal, or black-body, thought to be static or expanding?

 b) When the redshift of distant galaxies was first discovered, the earliest observafor introducing this term?

 The following questions are worth 5 points each.

PROBLEM 10: DID YOU DO THE READING? (20 points)

8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005
 where ρ is the mass density and ρ_{c} is the critical mass density (i.e., that mass

${ }^{\circ} d / d=v$

 you have forgotten, Ω is defined by
Find the relationship between q and Ω for a matter-dominated universe. [In case

$\frac{(7) z \underset{\sim}{u}}{(q)}(7) \underset{\sim}{y}-\equiv b$
 $R(t)$

expansion. The parameter is defined by

Many standard references in cosmology define a quantity called the deceler-

 expand the answer in part (d), there is an easier way.] $t_{4}, \Delta t$, and c.) [Hint: while this part can be answered by using brute force to to first order accuracy in Δt. (Express your answer in terms of $\ell_{0}, t_{1}, t_{2}, t_{3}$, time difference $t_{4}-t_{3}$ can be expanded to first order in Δt. Calculate $t_{4}-t_{3}$
f) (5 points; No partial credit) If the time Δt introduced in part (d) is small, the terms of $\ell_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \Delta t$, and c.) e) (5 points) When the response is received by galaxy A , the radio waves will be
redshifted by a factor $1+z$. Give an expression for z. (Express your answer in in terms of $\ell_{0}, t_{1}, t_{2}, t_{3}, \Delta t$, and c.)

 (whatever that is). At a time Δt after the receipt of the message, as measured message, finally deciding that it is an advertisement for Kellogg's Corn Flakes
d) (10 points) The creatures on galaxy B spend some time trying to decode the

8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005

HON＠YD ĐIG V ĐNILVdIOILNV ：¢I NGTGOYd＊

－00I fo

苗S甘田 universe？ factor $R(t)$ is proportional to $t^{2 / 3}$ ．How does $R(t)$ behave for a photon－dominated
 （7）${ }_{\mp} \Psi / \mathrm{L}$ mass and energy are equivalent，the mass density of the gas of photons falls off as （and hence the energy）of each photon redshifts in proportion to $1 / R(t)$ ．Since universe，the density of photons falls of as $1 / R^{3}(t)$ ，but in addition the frequency off as $1 / R^{3}(t)$ because the volume increases as $R^{3}(t)$ ．For the photon－dominated
 that the mass density of nonrelativistic matter falls off as $1 / R^{3}(t)$ as the universe
 This equation in fact applies to any form of mass density，so we can apply it to a

can be described by a scale factor $R(t)$ obeying the equation We have learned that a matter－dominated homogeneous and isotropic universe GSY苗AIN LVTA G＇ALVNINOG－NOILVIGVY V ：\＆I INGTGOYd

8．286 QUIZ 1 REVIEW PROBLEMS，FALL 2005
$\varepsilon I \cdot d$

$+\gamma r^{n}\left(r_{i}, t\right)$

$\frac{\left(7^{6} \cdot l\right)_{Z^{l}}}{\left({ }^{2} \iota\right) \pi D}-\underline{\square}$ $\left({ }^{?} \downarrow\right) W D$

strength that is independent of the mass．That is，suppose \vec{g} is given by producing an acceleration which grows as the nth power of the distance，with a

${ }^{2}{ }_{\dot{\varepsilon}}^{\imath}, \frac{\mathcal{E}}{\mu T}=\left({ }^{2} \iota\right)^{\prime} N$

\square where $M\left(r_{i}\right)$ denotes the total mass contained initially in the region $r<r_{i}$ ，given

$\frac{\left(7^{〔} \cdot \iota\right)_{7^{l}}}{\left({ }^{\imath}, \iota\right)}-\underline{6}$
 $G M\left(r_{i}\right)$

 （squiod ge）XLINVYゆ HO

MVT S،NOLMGN НО NOILVOIHIGON GTGISSOd V ：9I NGTGOYd

(ә)

 ¿q рие n s.əəəәұи! әчұ әле ұеч $М$

 of Weinberg, The First Three Minutes

 The following problem was taken from Problem 1, Quiz 1, 2004, where each part PROBLEM 17: DID YOU DO THE READING? чdеля̈ried snoب̣ләлd $p>1$. Show that this equation can be integrated once, as described in the

${ }^{\bullet} 0={ }_{b} \mathscr{U}+\frac{d \mathscr{C}}{V}+\underset{\sim}{G}$ - $\left(1^{〔},\right)^{2} n=(\jmath) \Psi$

 Show that the differential equation for R can be integrated once to obtain an $\left(7^{6 \cdot} \cdot \iota\right) n \equiv(7) વ$
 d) (15 points) If all is going well, then you have learned that for a certa

 ${ }^{?} \cdot l /\left(7^{6} \cdot l\right) \cdot l \equiv\left(7^{6} \cdot l\right) n$

8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2005

 (•иоұочd е Ќq рә!̣dnoэo әunโол

 the same factor.) expansion. Since the universe expands uniformly, all distances grow by effect is that the average distance between them is stretched with the

 reach us. distance also grows, since light from the distant galaxies has had more time to scale factor grows by 1% during this time interval, but the comoving horizon distance is equal to the scale factor times the comoving horizon distance. The

$0^{<} \uparrow$
(p

[^0]
 Needless to say, such a rate of matter production is totally undetectable, so be expressed as roughly one hydrogen atom per cubic meter per billion years! of matter production required for the steady-state universe theory can then Trogen atom is $1.67 \times 10^{-27} \mathrm{~kg}$, and that 1 year $=3.156 \times 10^{7} \mathrm{~s}$. The rate

 əsoddns •sn . ஃu!!

must be attributed to matter creation. The rate of matter creation per unit
time per unit volume is then given by
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2005
$0 z \cdot d$
 b) Kant proposed that the faint nebulae seen in the sky are distant galaxies,
similar to the Milky Way.
c) The Milky Way galaxy has a diameter of about 80,000 light-years, and a thick-
ness of 6,000 light-years.
d) The mathematical theory of an expanding universe, in the context of general
relativity, was invented by Alexandre Friedmann in 1922. (Actually the 1922
paper discussed only closed universes, but Friedmann published a second paper
on open universes in 1924.) Willem de Sitter published his model of the uni-
verse in 1917. De Sitter's model was initially believed to be static, but it was
later discovered that it appeared static only because it was written in peculiar
coordinates in fact it was also an expanding model. While Friedmann's equa-
tions described the general case of a homogeneous isotropic expanding universe,
de Sitter's model was more specific: it was a model devoid of matter, with the
expansion driven by a positive cosmological constant. The intended answer for
this question was Friedmann, but full credit was given for either Friedmann or
de Sitter.
e) It was Bernard Burke who told Arno Penzias about the prediction of radio
noise from the big bang.

* Astrophysical Journal, vol. 473, p. 576 (1996): The Cosmic Microwave Back-
ground Spectrum from the Full COBE FIRAS Data Sets, D.J. Fixsen, E.S. Cheng,
J.M. Gales, J.C. Mather, R.A. Shafer, and E.L. Wright.
PROBLEM 5: "DID YOU DO THE READING?"

 determined by the evolution of the scale factor, $R(t)$.]
 which fills the universe, but one has not said, for example, how the distance between very much about it's trajectory. One has said that it is moving with the matter says that a particle is standing still in comoving coordinates, one has not really said

 use any coordinate system on likes, but the comoving coordinates are the simplest. which the coordinates really measure the physical distances. In principle one can

- ОTO A' GNIL TV (j) Princeton University.
(i) Arno A. Penzias and Robert W. Wilson, Bell Telephone Laboratories. (h) 10^{7} light-years. the $1 / r^{2}$ law for the intensity of a point source to determine the distance r.

 star appears to be highly correlated with the period of its pulsations. This
(g) The absolute luminosity (i.e., the total light output) of a Cepheid variable standards, by a factor of 5 to 10
(f) 2 billion years. Hubble's value for Hubble's constant was high by modern (e) 1929 . (d) The distance to the Andromeda nebula is roughly 2 million light years (c) The cosmic microwave background is observed to be highly isotropic
 the temperature as 2.728 ± 0.004 Kelvin. The error here is quoted with a 8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2005

Imagine a hypothetical sphere in comoving coordinates as drawn above, cen-

 Note that I have used the formula from the front of the exam, but I have

 cosmological scales, so the effect of the expansion of the universe is negligible. The distance between the jet and the relay station is very short compared to problem into two simple parts.
 source, at exactly the instant that it receives it. The relay station therefore

where we used $\ell_{p}\left(t_{0}\right)=R\left(t_{0}\right) \ell_{c}$. Using the result of part (c) to write J in terms Кq шәл!.ळ шәчд S!̣ Чдлеә

Kant published his Universal Natural History and Theory of the Heavens, in

b) Individual stars in the Andromeda Nebula were resolved by Hubble in 1923. layers of the sun.

¿ゆNIGVGY 'HHL OC תOX GIC :8 N'HTGOYd $\cdot \kappa_{\text {I }} \mathrm{dde}$ between the galaxies, so the special relativity formula relating z to v does not

$$
\frac{\left({ }^{2} 7\right) \mathcal{Y}}{\left.\left({ }^{o} \not\right)\right) \mathcal{U}}=\frac{{ }^{2} \eta \nabla}{{ }^{o} \eta \nabla} \equiv z+\mathrm{I}
$$

shift is given by

 These students used the special relativity Doppler shift formula to convert that the Doppler shift could be treated as if it were entirely due to motion. stantial number of students wrote solutions based on the incorrect assumption Note added: In looking over the solutions to this problem, I found that a sub-
($\mathrm{LI} \cdot \mathrm{E}$)

Thus,

$\cdot \mathrm{I}-\frac{\frac{\partial}{a}+\mathrm{L}}{\frac{\partial}{a}-\mathrm{I}} \wedge^{\square}(z+\mathrm{I})=\rho z$
[•uns әЧł јо әәъృıns

 Copernicus in 1543.$]$

 ио!̣егй

(0 value of the Hubble constant by about a factor of 10.]

$6 z \cdot d$

so
d) The physical separation is just the scale factor times the coordinate separation,

c) The coordinate speed of light is $c / R(t)$, so the coordinate distance that light
b) In general, the (physical) horizon distance is given by
$H=\frac{1}{b t^{3 / 5}} \frac{3}{5} b t^{-2 / 5}=\frac{3}{5 t}$.
denotes a derivative with respect to cosmic time t. In this case
a) In general, the Hubble constant is given by $H=\dot{R} / R$, where the overdot

 He replied that this word is standard terminology in plasma physics, and was

 - SUOZP

 [7геде мән Кәчұ ұечд

 for any coordinate system, but the underlying physics can sometimes be obcoordinates to it. The mathematics of general relativity is designed to be valid problem is that when space is not Euclidean there is no simple way to assign ematical formalism of general relativity can be rather confusing. The basic the theory described a universe that was static or expanding, but the math-
 model is thought to be expanding.

b) At the time of its discovery, de Sitter's model was thought to be static [although time will be after Lecture Notes 7.]

 necessary to prevent a static universe from collapsing under the attractive force

of a wave. Thus, the separation between the receipt of the acknowledgement received with a redshift identical to that observed between two successive crests then the interval between a signal sent at t_{3} and a signal sent at $t_{3}+\Delta t$ will be f) If Δt is small compared to the time that it takes $R(t)$ to change significantly,

e) From the formula at the front of the exam,

The response is therefore sent at cosmic time $t_{2}+\Delta t$. The coordinate distance
between the galaxies is still $\ell_{0} / R\left(t_{1}\right)$, so
 Thus, the cosmic time interval between the receipt of the message and the
 each at rest with respect to the matter of the universe at the same location. (For d) Cosmic time is defined by the reading of suitably synchronized clocks which are
 except that the coordinate distance ℓ_{c} is replaced by $2 \ell_{c}$, and t_{2} is replaced by the time interval from t_{1} to t_{3}. The problem then becomes identical to part (b), round trip of the radio signal, which travels a coordinate distance $2 \ell_{c}$ during
[Alternatively, one could have begun the problem by considering the full
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2005

 $\left({ }_{7} \not{ }^{7} \nabla\right) \varrho+7 \nabla \quad\left(\frac{{ }_{z}}{\varepsilon_{7}}\right)={ }_{\varepsilon} \varepsilon_{7}-{ }^{\ddagger} 7$

Using the first boxed answer to part (c), this can be simplified to

which when specialized to $\Delta t=0$ becomes

$$
t_{4}=t_{3}+\left.\frac{\partial t_{4}}{\partial \Delta t}\right|_{\Delta t=0} \Delta t+\mathcal{O}\left(\Delta t^{2}\right) .
$$

Evaluating the necessary derivative gives
be Taylor expanded in powers of Δt. To first order one has
For those who prefer the brute force approach, the answer to part (d) can replaced by t_{3}.
where to first order in Δt the t_{4} in the numerator could equally well have been

evaluated to zeroth order in Δt :
Since the answer contains an explicit factor of Δt, the other factors can be

time interval between the sending of the two signals, and therefore and the receipt of the response will be a factor $(1+z)$ times longer than the

 where a dot denotes a derivative with respect to time t. The critical mass density
Numerically, $t \approx 1.06567 \alpha / c$.
$\cdot\left[(\varepsilon)_{\mathrm{I}-} \mathrm{YSOO}-\underline{\tau} \wedge \bar{\zeta}\right] \frac{o}{D}=7$
әлеч әм

The evolution of an open, matter-dominated universe is described by the fol-
lowing parametric equations:
for a photon-dominated flat universe.

that $R^{2} \propto t$, and therefore
$c^{\prime}=0$, which sets $t=0$ to be the time when $R=0$. Thus the above equation implies

$\rho+\nrightarrow(7$ suos $)={ }_{Z} \Psi \frac{Z}{\text { L }}$
the indefinite integral becomes

$$
\begin{aligned}
& \left(\mathrm{I}-\frac{\bar{z}}{\psi}\right) \frac{0}{\mathrm{~L}}= \\
& (\theta \text { uis }-\theta) \frac{\partial}{\partial}=7
\end{aligned}
$$

the universe at the time these measurements are made is given by

 $\cos \theta=0$ has multiple solutions，but we know that the θ－parameter for a closed

$$
\begin{aligned}
& \operatorname{sos}-\mathrm{L}) x=\frac{y \wedge}{y} \\
& \text { әsn ' } \theta \text { дәдәше.лед }
\end{aligned}
$$

（६）$\cdot \frac{{ }^{0} H}{\partial}=0$
Now use
Substituting t
ци шоху
риу
we find $\quad k c^{2}$

$\rho=\Omega_{0} \rho_{c}=2 \rho_{c}=\frac{3 H_{0}^{2}}{4 \pi G}$

Кq யәл！̣．® S！Кұ！！suәp sseu әчł os

$r\left(r_{i}, 0\right)=r_{i}\left(\right.$ definition of $\left.r_{i}\right)$
$\dot{r}\left(r_{i}, 0\right)=H_{i} r_{i}\left(\right.$ since $\left.\vec{v}_{i}=H_{i} \vec{r}\right)$
 （c）This is exactly the same as the case discussed in the lecture notes，since the

Substituting $u=r / r_{i}$ ，this becomes

	$\frac{?^{l} l}{u^{l}} l+\frac{z^{l}}{? d_{\grave{\zeta}}^{l} \iota \eta} \frac{\varepsilon}{\mu \pi}-=\frac{? \iota}{!l}$
	$\cdot{ }_{u} \mu+\frac{z^{l}}{? d_{\dot{\varepsilon}}^{l} \iota \eta} \frac{\varepsilon}{\mu \nabla}-=!$
［е！̣ұиәәәџ！р әчұ оұи！̣ ‘z！̣nb	
	（squıod GE）入LINVYゆ НО
MVT S،NOLMGN HO	NOILVOIHIGON 田TGISSOd V ：9I N＇GTGOYd

so the time remaining before the big crunch is given by
＇$\frac{{ }^{0} H}{\nu Z}=\frac{\partial}{0 \Perp Z}=$ reuy $_{7}$
The total lifetime of the closed universe corresponds to $\theta=2 \pi$ ，or
8．286 QUIZ 1 REVIEW PROBLEM SOLUTIONS，FALL 2005

p． 42

The Planck length is of the order of $10^{-35} \mathrm{~m}, 10^{-15} \mathrm{~m}, 10^{15} \mathrm{~m}$, or $10^{35} \mathrm{~m}$?
(b) What is the value of the Newtonian gravitational constant G in Planck units? -(unıұэəds әโq!s!̣ィ

 the night sky. What is Olber's paradox? What is the primary resolution of it?

$\frac{\eta \nu 8}{\partial \mathrm{~V}}={ }^{\text {วел }} \mathrm{d}$

 әЧL •unnəeл әчұ јо Кұ!

$\frac{z \mathcal{Y}}{\partial y}-\left(\frac{D \nu 8}{\partial \nu}+d\right) \eta \frac{\varepsilon}{\nu 8}=\left(\frac{U}{Y}\right)$

 se иәтұ!!мәл әq иет Since the time-dependent mass density $\rho(t)=\rho_{i} / R^{3}$, the differential equation

 Alpha- 7 acted as a relay station, receiving the photons and retransmitting them

 by the observer can be written as
(a) The easiest way to solve this problem is by a double application of the standard
special-relativity Doppler shift formula, which was given on the front of the
exam:

$$
z=\sqrt{\frac{1+\beta}{1-\beta}}-1 \text {, }
$$

where $\beta=v / c$. Remembering that the wavelength is stretched by a factor
$1+z$, we find immediately that the wavelength of the radio wave received at
Alpha-7 is given by

$$
\lambda_{\text {Alpha- }}=\sqrt{\frac{1+v_{s} / c}{1-v_{s} / c}} \lambda_{\text {emitted . }}^{\text {. }}
$$

The photons that are received by the observer are in fact never received by
Alpha-7, but the wavelength found by the observer will be the same as if
Alpha- 7 acted as a relay station, receiving the photons and retransmitting them
at the received wavelength. So, applying Eq. (18.1) again, the wavelength seen
by the observer can be written as

 than 1% of the mass density of the universe.(Weinberg, Chapter 1, Page 5)
Ans: Electrons, positrons, neutrinos, and ph the Big Bang? Include any constituent that is believed to have made up more
than 1% of the mass density of the universe.
(e) What did the universe primarily consist of at about $1 / 100$ th of a second after
 What are the integers a and b ?
 $3 \times 10^{a} \mathrm{~K}$, it became transparent to photons, and today we observe these as the
(d) In the "Standard Model" of the universe, when the universe cooled to about expansion). Yes, the Hubble expansion is consistent with it (since there is no center of Ans: The Cosmological Principle states that there is nothing special about our
location in the universe, i.e. the universe is homogeneous and isotropic. (Weinberg, Chapter 2, Pages 21-23; Ryden, Chapter 2, Page 11)

$\kappa_{\text {ITеuy os }}$
8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2005

[^0]:

