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REVIEW PROBLEMS FOR QUIZ 3

QUIZ DATE: Thursday, December 8, 2005

COVERAGE: Lecture Notes 7 and 8; Problem Set 5; Ryden, Chapters 8, 9, and
Epilogue; Weinberg, Chapters 6, 7, 8, and the Afterward. One of the prob-
lems on the quiz will be taken verbatim (or at least almost verbatim)
from either the homework assignments, or from the starred problems
from this set of Review Problems.

PURPOSE: These review problems are not to be handed in, but are being made
available to help you study. They come mainly from quizzes in previous years.
In some cases the number of points assigned to the problem on the quiz is listed
— in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page
the actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, and 2004.
The relevant problems from those quizzes have mostly been incorporated into
these review problems, but you still may be interested in looking at the quizzes,
just to see how much material has been included in each quiz. The coverage of
the upcoming quiz will not necessarily match the coverage of any of the quizzes
from previous years.

INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” at the
beginning. For the third quiz, this useful information will be the following:

DOPPLER SHIFT:

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
R(tobserved)
R(temitted)
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COSMOLOGICAL EVOLUTION:

H2 =

(
Ṙ

R

)2

=
8π
3
Gρ−kc2

R2
⇐ or ⇒ H2 =

(
ȧ

a

)2

=
8πG
3c2

ε− κc2

R2
0a

2

R̈ = −4π
3
G

(
ρ+

3p
c2

)
R ⇐ or ⇒ ä

a
= −4πG

3c2
(ε+ 3P )

ρ̇ = −3
Ṙ

R

(
ρ+

p

c2

)
⇐ or ⇒ ε̇ = −3

ȧ

a
(ε+ P )

EVOLUTION OF A FLAT (Ω ≡ ρ/ρc = 1) UNIVERSE:

R(t) ∝ t2/3 (matter-dominated)

R(t) ∝ t1/2 (radiation-dominated)

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

(
Ṙ

R

)2

=
8π
3
Gρ− kc2

R2

R̈ = −4π
3
GρR

ρ(t) =
R3(ti)
R3(t)

ρ(ti)

Closed (Ω > 1): ct = α(θ − sin θ) ,
R√
k
= α(1− cos θ) ,

where α ≡ 4π
3

GρR3

k3/2c2

Open (Ω < 1): ct = α (sinh θ − θ)
R√
κ
= α (cosh θ − 1) ,

where α ≡ 4π
3

GρR3

κ3/2c2
,

κ ≡ −k .
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ROBERTSON-WALKER METRIC:

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}

SCHWARZSCHILD METRIC:

ds2 = −c2dτ2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1
2
(∂igk�)

dxk

ds

dx�

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1
2
(∂µgλσ)

dxλ

dτ

dxσ

dτ

COSMOLOGICAL CONSTANT:

pvac = −ρvacc
2 ρvac =

Λc2

8πG

where Λ is the cosmological constant.

PHYSICAL CONSTANTS:

G = 6.673× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K ,

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

c = 2.998× 1010 cm/sec

1 yr = 3.156× 107 s

1 eV = 1.602× 10−12 erg .
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BLACK-BODY RADIATION:

u = g
π2

30
(kT )4

(h̄c)3
(energy density)

p =
1
3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45
k4T 3

(h̄c)3
, (entropy density)

where

g ≡
{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡
{
1 per spin state for bosons

3/4 per spin state for fermions ,

and
ζ(3) =

1
13

+
1
23

+
1
33

+ · · · ≈ 1.202 .

EVOLUTION OF A FLAT RADIATION-DOMINATED
UNIVERSE:

kT =
(

45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV 
 kT 
 me = 0.511 MeV, g = 10.75 and
then

kT =
0.860 MeV√
t (in sec)

PROBLEM 1: NUMBER DENSITIES IN THE COSMIC BACK-
GROUND RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number
density of thermal neutrinos left over from the big bang?
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∗PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION (25
points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the for-
mulas at the front of the exam. Since you were not asked to bring calculators, you
may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of pho-
tons at temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has
spin zero, so there is only one spin state. Would the average energy per particle
and entropy per particle be different from the answers you gave in parts (a)
and (b)? If so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These
particles are fermions with spin 1/2, and we will assume that they are massless
and have only one possible spin state. What is the average energy per particle
for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation
of neutrinos, as described in part (d)?

∗PROBLEM 3: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by includ-
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly
the same properties as an electron, except that its mass is given by mc2 = 0.750
MeV.

Parts (a)-(c) of this question require numerical answers, but since you were
not told to bring calculators, you need not carry out the arithmetic. Your answer
should be expressed, however, in “calculator-ready” form— that is, it should be an
expression involving pure numbers only (no units), with any necessary conversion
factors included. (For example, if you were asked how many meters a light pulse in
vacuum travels in 5 minutes, you could express the answer as 2.998× 108× 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per
cubic meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is
accurately described by a flat, radiation-dominated model, what would be the
value of the mass density at t = .01 sec? You may assume that 0.75 MeV �
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kT � 100 MeV, so the particles contributing significantly to the black-body
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion
pairs. Express your answer in the units of gm-cm−3.

c) (5 points) Under the same assumptions as in (b), what would be the value of
kT , in MeV, at t = .01 sec?

d) (5 points) When nucleosynthesis calculations are modified to include the effect
of the 8.286ion, is the production of helium increased or decreased? Explain
your answer in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT 
 0.75 MeV. If the
8.286ions are included, what does one predict for the value of Tν/Tγ today?
(Here Tν denotes the temperature of the neutrinos, and Tγ denotes the tem-
perature of the cosmic background radiation photons.)

∗PROBLEM 4: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002. Although it is couched in
the language of Lecture Notes 13, the physics is really the same as the pressure
calculations in Lecture Notes 7, so a modified form of this problem would be fair for
the coming quiz.

In Lecture Notes 13, a thought experiment involving a piston was used to show
that p = −ρc2 for any substance for which the energy density remains constant
under expansion. In this problem you will apply the same technique to calculate
the pressure of mysterious stuff, which has the property that the energy density
falls off in proportion to 1/

√
V as the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to
V +∆V . You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.
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(a) (15 points) Using the fact that the energy density of mysterious stuff falls off
as 1/

√
V , find the amount ∆U by which the energy inside the piston changes

when the volume is enlarged by ∆V . Define ∆U to be positive if the energy
increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how
much work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the
mysterious stuff in terms of its energy density u. (If you did not answer parts
(a) and/or (b), explain as best you can how you would determine the pressure
if you knew the answers to these two questions.)

∗PROBLEM 5: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF
(15 points)

Consider a universe that contains nonrelativistic matter, radiation, vacuum en-
ergy, and the same mysterious stuff that was introduced in the previous problem.
Since the mass density of mysterious stuff falls off as 1/

√
V , where V is the volume,

it follows that in an expanding universe the mass density of mysterious stuff falls
off as 1/R3/2(t).

Suppose that you are given the present value of the Hubble parameter H0,
and also the present values of the contributions to Ω ≡ ρ/ρc from each of the
constituents: Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy
density), and Ωms,0 (mysterious stuff). Our goal is to express the age of the universe
t0 in terms of these quantities.

(a) (8 points) Let x(t) denote the ratio

x(t) ≡ R(t)
R(t0)

for an arbitrary time t. Write an expression for the total mass density of the
universe ρ(t) in terms of x(t) and the given quantities described above.

(b) (7 points) Write an integral expression for the age of the universe t0. The
expression should depend only on H0 and the various contributions to Ω0 listed
above (Ωm,0 , Ωr,0 , etc.), but it might include x as a variable of integration.
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Extra Credit for Super-Sharpies (no partial credit): For 5 points extra credit, you
can calculate the angular diameter ∆θ of the image of a spherical object at
redshift z which had a physical diameter w at the time of emission. You should
assume that Ωtot < 1, and also that ∆θ � 1. The calculation is to be carried
out for the same model universe described above.

PROBLEM 6: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various
important events in the history of the universe are believed to have taken place.
The times are measured from the instant of the big bang. To avoid ambiguities,
you are asked to choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without
explanation. The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;

(c) the time of the phase transition predicted by grand unified theories, which
takes place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted
from a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to
occur when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one an-
swer will be acceptable. You are asked, however, to give ONLY ONE of the
acceptable answers.
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PROBLEM 7: SHORT ANSWERS (40 points)

The following problem was Problem 1, Quiz 3, 2002. The questions concerning
Steven Weinberg’s book are relevant to Quiz 3 of 2005.

(a) (6 points) In chapter 6 of The First Three Minutes, Steven Weinberg posed the
question, “Why was there no systematic search for this [cosmic background]
radiation, years before 1965?” In discussing this issue, he contrasted it with
the history of two different elementary particles, each of which were predicted
approximately 20 years before they were first detected. Name one of these
two elementary particles. (If you name them both correctly, you will get 3
points extra credit. However, one right and one wrong will get you 4 points for
the question, compared to 6 points for just naming one particle and getting it
right.)

Answer:
2nd Answer (optional):

(b) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg
discusses three reasons why the importance of a search for a 3◦ K microwave
radiation background was not generally appreciated in the 1950s and early
1960s. Choose those three reasons from the following list. (2 points for each
right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tem-
perature of only about 0.1◦ K, and such a background would be too weak
to detect.

(ii) There was a breakdown in communication between theorists and experi-
mentalists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦ K
microwave background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state
model, the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory
of the early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin,
et al., had attempted to explain the origin of all complex nuclei by reactions
in the early universe. This program was never very successful, and its
credibility was further undermined as improvements were made in the
alternative theory, that elements are synthesized in stars.

(c) (8 points) In Chapter 6 of Rowan-Robinson’s Cosmology, he discusses the obser-
vational evidence which indicates that galaxies and clusters of galaxies contain
large amounts of dark matter — matter which is not seen, but which is detected



8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2005 p. 10

indirectly through its gravitational effects. State whether each of the follow-
ing statements is true or false. (2 points for each right answer, no penalty for
guessing wrong, and remember that a statement that is partly true and partly
false counts as false.)

(i) Measurements of the rotation curves (rotational velocity as a function of
distance from the center) of spiral galaxies are found to be approximately
flat, even when extended to large radii. If, however, the mass were con-
centrated where the light is seen, these rotation curves would fall off with
distance from the center. T or F .

(ii) For elliptical galaxies, measurements of the Doppler spreading of the emis-
sion lines are used to determine the typical speeds of stars and gas, which
can be related by the virial theorem to the gravitational potential energy.
This Doppler spreading is much smaller than would be expected in the
absence of dark matter, indicating that about 90% of the total mass of the
galaxy is in the form of a halo of dark matter. T or F .

(iii) The masses of rich clusters can be estimated by observing the pattern of
X-ray emission. T or F .

(iv) The masses of individual stars can be determined by their spectral char-
acteristics, and these masses can be added to find the mass of the galaxy.
T or F .

(d) (6 points) On the graph below, sketch the potential energy function V (φ) (at
zero temperature) that is assumed in the new inflationary universe theory.
Label the location of the true vacuum and false vacuum.

(e) (6 points) The word “supersymmetry” refers to a symmetry that relates the
behavior of one certain class of particles with the behavior of another class.
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What are the names of these two classes (2 points)? What physical property
distinguishes particles of one class from the particles of the other (4 points)?

1st Class: 2nd Class:
Physical distinction:

(f) (8 points) Grand unified theories unify three of the four known classes of particle
interactions. For 2 points each, name these three, and also name the one that
is left out.

Included:

Included:

Included:

Excluded:

∗PROBLEM 8: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

The following problem was Problem 4, Quiz 3, 2004.

On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of
what was then the most distant object known in the universe: a quasar at z = 5.82.
To explain to the public how this object fits into the universe, the SDSS posted on
their website an article by Michael Turner and Craig Wiegert titled “How Can An
Object We See Today be 27 Billion Light Years Away If the Universe is only 14
Billion Years Old?” Using a model with H0 = 65 km-s−1-Mpc−1, Ωm = 0.35, and
ΩΛ = 0.65, they claimed

(a) that the age of the universe is 13.9 billion years.

(b) that the light that we now see was emitted when the universe was 0.95 billion
years old.

(c) that the distance to the quasar, as it would be measured by a ruler today, is
27 billion light-years.

(d) that the distance to the quasar, at the time the light was emitted, was 4.0
billion light-years.

(e) that the present speed of the quasar, defined as the rate at which the distance
between us and the quasar is increasing, is 1.8 times the velocity of light.
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The goal of this problem is to check all of these conclusions, although you are
of course not expected to actually work out the numbers. Your answers can be
expressed in terms of H0, Ωm, ΩΛ, and z. Definite integrals need not be evaluated.

Note that Ωm represents the present density of nonrelativistic matter, expressed
as a fraction of the critical density; and ΩΛ represents the present density of vacuum
energy, expressed as a fraction of the critical density. In answering each of the
following questions, you may consider the answer to any previous part — whether
you answered it or not — as a given piece of information, which can be used in your
answer.

(a) (15 points) Write an expression for the age t0 of this model universe?

(b) (5 points) Write an expression for the time te at which the light which we now
receive from the distant quasar was emitted.

(c) (10 points) Write an expression for the present physical distance -phys,0 to the
quasar.

(d) (5 points) Write an expression for the physical distance -phys,e between us and
the quasar at the time that the light was emitted.

(e) (5 points) Write an expression for the present speed of the quasar, defined as
the rate at which the distance between us and the quasar is increasing.
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SOLUTIONS
PROBLEM 1: NUMBER DENSITIES IN THE COSMIC BACK-

GROUND RADIATION

In general, the number density of a particle in the black-body radiation is given
by

n = g∗
ξ(3)
π2

(
kT

h̄c

)3

For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec




=⇒
(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) � 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3
4
=

3
2

per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the
Pauli exclusion principle. So for three species of neutrinos one has

g∗ν =
9
2
.

Using the result

T 3
ν =

4
11

T 3
γ

from Problem 8 of Problem Set 3 (2000), one finds

nν =
(
g∗ν
g∗γ

)(
Tν

Tγ

)3

nγ

=
(
9
4

)(
4
11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).
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PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the
number density. The photon is a boson with two spin states, so g = g∗ = 2.
Using the formulas on the front of the exam,

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to
know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which
is often used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the
entropy density:

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzman constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be
no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2005 p. 15

number of spin states. So the average energy per particle is

E =
g
π2

30
(kT )4

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
π2

30
(kT )4

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy

per particle is unaffected — the energy density and the total number density

are both doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons.

This result can be understood as a natural consequence of the fact that fermions

must obey the exclusion principle, while bosons do not. Large numbers of

bosons can therefore collect in the lowest energy levels. In fermion systems,

on the other hand, the low-lying levels can accommodate at most one particle,

and then additional particles are forced to higher energy levels.
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(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =
g
2π2

45
k4T 3

(h̄c)3

g∗
ζ(3)
π2

(kT )3

(h̄c)3

=

7
8
2π2

45
k4T 3

(h̄c)3

3
4
ζ(3)
π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 3: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)
π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4
because the particles are fermions. So

Then

Answer = 3
ζ(3)
π2

×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes

(
Ṙ

R

)2

=
8π
3
Gρ .

During the radiation-dominated era R(t) ∝ t1/2, as claimed on the front cover
of the exam. So,

Ṙ

R
=

1
2t

.

Using this in the above equation gives

1
4t2

=
8π
3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference,
doing so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density
for black-body radiation is given in the exam,

u = ρc2 = g
π2

30
(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found
above in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 12

νe, νµ, ντ : g = 6× 7
8 = 5 14

8.286ion− anti8.286ion g = 4× 7
8 = 3 12
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gtot = 14
1
4

.

Solving for kT in terms of ρ gives

kT =
[
30
π2

1
gtot

h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants
from the cover sheet of the exam gives

kT =
[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1
1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields
kT = 8.02 MeV.

d) The production of helium is increased. At any given temperature, the addi-
tional particle increases the energy density. Since H ∝ ρ1/2, the increased
energy density speeds the expansion of the universe— the Hubble constant at
any given temperature is higher if the additional particle exists, and the tem-
perature falls faster. The weak interactions that interconvert protons and neu-
trons “freeze out” when they can no longer keep up with the rate of evolution
of the universe. The reaction rates at a given temperature will be unaffected
by the additional particle, but the higher value of H will mean that the tem-
perature at which these rates can no longer keep pace with the universe will
occur sooner. The freeze-out will therefore occur at a higher temperature. The
equilibrium value of the ratio of neutron to proton densities is larger at higher
temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and np are the number
densities of neutrons and protons, and ∆m is the neutron-proton mass differ-
ence. Consequently, there are more neutrons present to combine with protons
to build helium nuclei. In addition, the faster evolution rate implies that the
temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the
helium production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved
separately from the entropy in the rest of the radiation bath. Just after neu-
trino decoupling, all of the particles in equilibrium are described by the same
temperature which cools as T ∝ 1/R. The entropy in the bath of particles still
in equilibrium just after the neutrinos decouple is

S ∝ grestT
3(t)R3(t)
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where grest = gtot − gν = 9. By today, the e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho-
ton bath. As a result the temperature of the photon bath is increased relative
to that of the neutrino bath. From conservation of entropy we have that the
entropy after annihilations is equal to the entropy before annihilations

gγT
3
γR

3(t) = grestT
3(t)R3(t) .

So,
Tγ

T (t)
=
(
grest
gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihila-
tions, we have that

Tν

Tγ
=
(
2
9

)1/3

.

PROBLEM 4: PRESSURE AND ENERGY DENSITY OF
MYSTERIOUS STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V +∆V ) = u0

√
V

V +∆V
.

(The above expression is proportional to 1/
√
V +∆V , and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2
∆V
V

= u0

(
1− 1

2
∆V

V

)
.

The total energy is the energy density times the volume, so

U = u(V +∆V ) = u0

(
1− 1

2
∆V

V

)
V

(
1 +

∆V

V

)
= U0

(
1 +

1
2
∆V

V

)
,

where U0 = u0V . Then

∆U =
1
2
∆V

V
U0 .
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(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

∆W = ∆U =
1
2
∆V

V
U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1
2
U0

V
= − 1

2
u0 .

PROBLEM 5: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF

(a) The critical density ρc is defined as that density for which k = 0, where the
Friedmann equation from the front of the exam implies that

H2 =
8π
3
Gρ− kc2

R2
.

Thus the critical density today is given by

ρc =
3H2

0

8πG
.

The mass density today of any species X is then related to ΩX,0 by

ρX,0 = ρcΩX,0 =
3H2

0ΩX,0

8πG
.

The total mass density today is then expressed in terms of its four components
as

ρ0 =
3H2

0

8πG
[Ωm,0 + Ωr,0 + Ωv,0 +Ωms,0] .

But we also know how each of these contributions to the mass density scales
with x(t): ρm ∝ 1/x3, ρr ∝ 1/x4, ρv ∝ 1, and ρms ∝ 1/

√
V ∝ 1/x3/2. Inserting

these factors,

ρ(t) =
3H2

0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2

]
.
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(b) The Friedmann equation then becomes

(
ẋ

x

)2

=
8πG
3

3H2
0

8πG

[
Ωm,0

x3
+

Ωr,0

x4
+ Ωv,0 +

Ωms,0

x3/2

]
− kc2

R2
.

Defining

H2
0Ωk,0 = − kc2

R2(t0)
,

so

− kc2

R2(t)
= − kc2

R2(t0)
1
x2

=
H2
0Ωk,0

x2
,

and then the Friedmann equation becomes

(
ẋ

x

)2

= H2
0

[
Ωm,0

x3
+

Ωr,0

x4
+Ωv,0 +

Ωms,0

x3/2
+

Ωk,0

x2

]
.

Applying this equation today, when ẋ/x = H0, one finds that

Ωk,0 = 1− Ωm,0 − Ωr,0 − Ωv,0 − Ωms,0 .

Rearranging the equation for (ẋ/x)2 above,

H0 dt =
dx

x
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

The age of the universe is found by integrating over the full range of x, which
starts from 0 when the universe is born, and is equal to 1 today. So

t0 =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 + Ωr,0

x4 + Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.

Extra Credit for Super-Sharpies (no partial credit):

Since Ωtot < 1, we use the Robertson-Walker open universe form

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{

dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,
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where I have started with the general form from the front of the exam, and
replaced k by −1. To discuss the radial transmission of light rays it is useful
to define a new radial coordinate

r = sinhψ ,

so
dr = coshψ dψ =

√
1 + r2 dψ ,

where I used the identity that cosh2 ψ = 1 + sinh2 ψ. The metric can then be
rewritten as

ds2 = −c2 dτ2 = −c2 dt2 +R2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

Light rays then travel with dτ2 = 0, so

dψ
dt

=
c

R(t)
.

If a light ray leaves the object at time te and arrives at Earth today, then it
will travel an interval of ψ given by

ψ =
∫ t0

te

c

R(t′)
dt′ .

We will need to know ψ, but we don’t know either te or R(t). So we need to
manipulate the right-hand side of the above equation to express it in terms of
things that we do know. Changing integration variables from t′ to x, where
x = R(t′)/R(t0), one finds dx = ẋ dt′, and then

ψ =
∫ 1

xe

c

R(t0)
1
x

dx
ẋ

.

Using H = ẋ/x,

ψ =
c

R(t0)

∫ 1

xe

dx
x2H

.

Now use the formula for H = ẋ/x from part (b), so

ψ =
c

R(t0)H0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2005 p. 23

Here

xe =
R(te)
R(t0)

=
1

1 + z
,

and the coefficient in front of the integral can be evaluated using the Friedman
equation for k = −1:

H2
0 =

8π
3
Gρ0 +

c2

R2(t0)
= H2

0Ω0 +
c2

R2(t0)
,

so
c2

R2(t0)H2
0

= 1−Ω0 = Ωk,0 .

Finally, then, the expression for ψ can be written

ψ =
√
Ωk,0

∫ 1

xe

dx

x2
√

Ωm,0
x3 + Ωr,0

x4 +Ωv,0 +
Ωms,0

x3/2 + Ωk,0
x2

,

where xe is given by the boxed equation above.

Once we know ψ, the rest is straightforward. We draw a picture in comoving
coordinates of the light rays leaving the object and arriving at Earth:

In this picture ∆θ is the angular size that would be measured. Using the dθ2

part of the metric,
ds2 = R2(t) sinh2 ψ dθ2 ,

we can relate w, the physical size of the object at the time of emission, to ∆θ:

w = R(te) sinhψ∆θ .
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To evaluate R(te) we can use

R(te) = xeR(t0) =
xec

H0

√
Ωk,0

.

Finally, then,

∆θ =
wH0

√
Ωk,0

xec sinhψ
,

where ψ is given by the boxed equation above.

PROBLEM 6: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”,
so that free neutron decay becomes the only mechanism that can interchange
protons and neutrons. From this time onward, the relative number of protons
and neutrons is no longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions
are no longer initiated.]

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1
sec. Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times
higher. In the radiation-dominated era T ∝ R−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as
200,000 years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 7: SHORT ANSWERS (40 points)

(a) The correct answers were the neutrino and the antiproton. The neutrino
was first hypothesized by Wolfgang Pauli in 1932 (in order to explain the kine-
matics of beta decay), and first detected in the 1950s. After the positron was
discovered in 1932, the antiproton was thought likely to exist, and the Bevatron
in Berkeley was built to look for antiprotons. It made the first detection in the
1950s.

(b) The correct answers were (ii), (v) and (vi). The others were incorrect for the
following reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman
in 1948, was 5 degrees, not 0.1 degrees.
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(iii) Weinberg quotes his experimental colleagues as saying that the 3◦ K radi-

ation could have been observed “long before 1965, probably in the mid-

1950s and perhaps even in the mid-1940s.” To Weinberg, however, the

historically interesting question is not when the radiation could have been

observed, but why radio astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either

the steady state model or the big bang model, as indicated by the sentence

in item (v) which is a direct quote from the book: “It was extraordinarily

difficult for physicists to take seriously any theory of the early universe”.

(c)

(i) True. The rotation curves do not drop outside the luminous part of spiral

galaxies but approach an approximately constant velocity. This indicates

that there is a dark halo of matter well beyond the luminous part of the

galaxy.

(ii) False. The Doppler spreading is much larger than would be expected in

the absence of dark matter, not smaller as was stated.

(iii) True. The intensity and spectrum of the X-rays along a particular line

of sight are used to estimate the density and temperature of the gas along

that line of sight, and this information is then used with the equations

of hydrostatic equilibrium to build a model of the cluster. See, for ex-

ample, Claude Canizares’ article in Astrophysics and Space Science 267

(1-4): 251-260, 1999, “Dark Matter in Clusters of Galaxies”. For grading,

however, all students were given 2 points for this question no matter what

answer was given, on the grounds that the the Rowan-Robinson textbook

was not very clear on this point.

(iv) False. Most of the mass of the galaxy is in the dark matter, not stars.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2005 p. 26

(d)

(e) Supersymmetry relates bosons and fermions.

The physical distinction between these is that

• fermions obey the Pauli exclusion principle and bosons do not.

Alternatively, one could say that

• bosons are described in quantum theory by wave functions that are sym-
metric under the interchange of two identical particles, while fermions
are described by wave functions that are antisymmetric under the inter-
change of two identical particles.

As a third alternative, one could say that

• bosons have integer spin (i.e., 0, 1, 2, . . . ) and fermions half-integer spin
(i.e., 1/2, 3/2, . . . ).

(These three alternatives are all closely related. The second alternative is
really a more detailed version of the first. The third alternative, concerning
the spin, has no obvious relation to the first two, but nontheless in relativistic
quantum field theory there is a “spin-statistics” theorem which implies that
any integer-spin particle must be described by a symmetric wave function, and
any half-integer-spin particle must be described by an antisymmetric one.)

(f) Grand unified theories unify the strong, weak, and electromagnetic interactions.
Only gravity is excluded.

— Problem and solution written by Jamie Portsmouth, with some editing by
AHG.
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PROBLEM 8: THE SLOAN DIGITAL SKY SURVEY z = 5.82
QUASAR (40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a
simple form of the Friedmann equation,

H2 =

(
Ṙ

R

)2

=
8π
3
G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term pro-
portional to k has been dropped. Using the fact that ρm ∝ 1/R3(t) and ρΛ =
const, the energy densities on the right-hand side can be expressed in terms of
their present values ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ R(t)
R(t0)

,

one has (
ẋ

x

)2

=
8π
3
G
(ρm,0

x3
+ ρΛ

)

=
8π
3
Gρc,0

(
Ωm,0

x3
+ΩΛ,0

)

= H2
0

(
Ωm,0

x3
+ ΩΛ,0

)
.

Here we used the facts that

Ωm,0 ≡ ρm,0

ρc,0
; ΩΛ,0 ≡ ρΛ

ρc,0
,

and
H2
0 =

8π
3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0

x3
+ ΩΛ,0 ,

which in turn implies that

dt =
1
H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.
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Using the fact that x changes from 0 to 1 over the life of the universe, this
relation can be integrated to give

t0 =
∫ t0

0

dt =
1
H0

∫ 1

0

dx

x
√

Ωm,0
x3 +ΩΛ,0

.

The answer can also be written as

t0 =
1
H0

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

or

t0 =
1
H0

∫ ∞

0

dz
(1 + z)

√
Ωm,0(1 + z)3 +ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.

Note that the minus sign in the expression for dx is canceled by the interchange
of the limits of integration: x = 0 corresponds to z = ∞, and x = 1 corresponds
to z = 0.

Your answer should look like one of the above boxed answers. You were not
expected to complete the numerical calculation, but for pedagogical purposes
I will continue. The integral can actually be carried out analytically, giving

∫ 1

0

x dx√
Ωm,0x+ΩΛ,0x4

=
2

3
√
ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1
H0

=
9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1
H0

= 15.043× 109 yr .
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Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) Having done part (a), this part is very easy. The dynamics of the universe is
of course the same, and the question is only slightly different. In part (a) we
found the amount of time that it took for x to change from 0 to 1. The light
from the quasar that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
R(tobserved)
R(temitted)

.

Using the expression for dt from part (a), the amount of time that it took the
universe to expand from x = 0 to x = 1/(1 + z) is given by

te =
∫ te

0

dt =
1
H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Again one could write the answer other ways, including

t0 =
1
H0

∫ ∞

z

dz′

(1 + z′)
√
Ωm,0(1 + z′)3 + ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Con-
tinuing, however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm +ΩΛ,0x3max +

√
ΩΛ,0 x

3/2
max√

Ωm

)
.
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Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321

H0
= 0.9509× 109 yr .

So again the SDSS people were right.

(c) To find the physical distance to the quasar, we need to figure out how far light
can travel from z = 5.82 to the present. Since we want the present distance,
we multiply the coordinate distance by R(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 +R2(t)
{
dr2 + r2(dθ2 + sin2 θ dφ2)

}
,

the coordinate velocity of light (in the radial direction) is found by setting
ds2 = 0, giving

dr
dt

=
c

R(t)
.

So the total coordinate distance that light can travel from te to t0 is

-c =
∫ t0

te

c

R(t)
dt .

This is not the final answer, however, because we don’t explicitly know R(t).
We can, however, change variables of integration from t to x, using

dt =
dt
dx

dx =
dx
ẋ

.

So

-c =
c

R(t0)

∫ 1

xe

dx
x ẋ

,

where xe is the value of x at the time of emission, so xe = 1/(1+ z). Using the
equation for ẋ from part (a), this integral can be rewritten as

-c =
c

H0R(t0)

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 + ΩΛ,0

.

Finally, then

-phys,0 = R(t0) -c =
c

H0

∫ 1

1/(1+z)

dx

x2
√

Ωm,0
x3 +ΩΛ,0

.
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Alternatively, this result can be written as

-phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ΩΛ,0 x4

,

or by changing variables of integration to obtain

-phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic
form, so far as I know. Integrating numerically,∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

-phys,0 = 27.23 light-yr .

Right again.

(d) -phys,e = R(te)-c, so

-phys,e =
R(te)
R(t0)

-phys,0 =
-phys,0
1 + z

.

Numerically this gives

-phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0 -phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2005 p. 32

Then

v

c
=
∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.


