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PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (4 points) What was the first external galaxy that was shown to be at a distance
significantly greater than the most distant known objects in our galaxy? How
was the distance estimated?

Ans: (Weinberg, page 20) The first galaxy shown to be at a distance beyond the
size of our galaxy was Andromeda, also known by its Messier number, M31.
It is the nearest spiral galaxy to our galaxy. The distance was determined
(by Hubble) using Cepheid variable stars, for which the absolute luminosity is
proportional to the period. A measurement of a particular Cepheid’s period
determines the star’s absolute luminosity, which, compared to the measured
luminosity, determines the distance to the star. (Hubble’s initial measurement
of the distance to Andromeda used a badly-calibrated version of this period-
luminosity relationship and consequently underestimated the distance by more
than a factor of two; nonetheless, the initial measurement still showed that
the Andromeda Nebula was an order of magnitude more distant than the most
distant known objects in our own galaxy.)

(b) (5 points) What is recombination? Did galaxies begin to form before or after
recombination? Why?

Ans: (Weinberg, pages 64 and 73) Recombination refers to the formation of
neutral atoms out of charged nuclei and electrons. Galaxies began to form
after recombination. Prior to recombination, the strong electromagnetic inter-
actions between photons and matter produced a high pressure which effectively
counteracted the gravitational attraction between particles. Once the universe
became transparent to radiation, the matter no longer interacted significantly
with the photons and consequently began to undergo gravitational collapse into
large clumps.

(c) (4 points) In Chapter IV of his book, Weinberg develops a “recipe for a hot
universe,” in which the matter of the universe is described as a gas in thermal
equilbrium at a very high temperature, in the vicinity of 109 K (several thou-
sand million degrees Kelvin). Such a thermal equilibrium gas is completely
described by specifying its temperature and the density of the conserved quan-
tities. Which of the following is on this list of conserved quantities? Circle as
many as apply.



8.286 QUIZ 1 SOLUTIONS, FALL 2005 p. 2

(i) baryon number (ii) energy per particle (iii) proton number

(iv) electric charge (v) pressure

Ans: (Weinberg, page 91) The correct answers are (i) and (iv). A third con-
served quantity, lepton number, was not included in the multiple-choice options.

(d) (4 points) The wavelength corresponding to the mean energy of a CMB (cosmic
microwave background) photon today is approximately equal to which of the
following quantities? (You may wish to look up the values of various physical
constants at the end of the quiz.)

(i) 2 fm (2× 10−15 m)

(ii) 2 microns (2× 10−6 m)

(iii) 2 mm (2 × 10−3 m)

(iv) 2 m.

Ans: (Ryden, page 23) The correct answer is (iii).

If you did not remember this number, you could estimate the answer by remem-
bering that the characteristic temperature of the cosmic microwave background
is approximately 3 Kelvin. The typical photon energy is then on the order of
kT , from which we can find the frequency as E = hν. The wavelength of the
photon is then λ = ν/c. This approximation gives λ = 5.3 mm, which is not
equal to the correct answer, but it is much closer to the correct answer than to
any of the other choices.

(e) (4 points) What is the equivalence principle?

Ans: (Ryden, page 27) In its simplest form, the equivalence principle says that
the gravitational mass of an object is identical to its inertial mass. This equality
implies the equivalent statement that it is impossible to distinguish (without
additional information) between an observer in a reference frame accelerating
with acceleration 
a and an observer in an inertial reference frame subject to a
gravitational force −mobs
a.

(Actually, what the equivalence principle really says is that the ratio of the
gravitational to inertial masses mg/mi is universal, that is, independent of the
material properties of the object in question. The ratio does not necessarily
need to be 1. However, once we know that the two types of masses are pro-
portional, we can simply define the gravitational coupling G to make them
equal. To see this, consider a theory of gravity where mg/mi = q. Then the
gravitational force law is

mia = −GMmg

r2
,
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or
a = −GqM

r2
.

At this point, if we define G′ = Gq, we have a gravitational theory with gravi-
tational coupling G′ and inertial mass equal to gravitational mass.)

(f) (4 points) Why is it difficult for Earth-based experiments to look at the small
wavelength portion of the graph of CMB energy density per wavelength vs.
wavelength?

Ans: (Weinberg, page 67) The Earth’s atmosphere is increasingly opaque for
wavelength shorter than .3 cm. Therefore, radiation at these wavelengths will
be absorbed and rescattered by the Earth’s atmosphere; observations of the
cosmic microwave background at small wavelengths must be performed above
the Earth’s atmosphere.

PROBLEM 2: EVOLUTION OF AN OPEN, MATTER-DOMINATED
UNIVERSE (30 points)

This question was Problem 5 on Problem Set 2.

(a) We use the chain rule to write the definition of the Hubble parameter in terms
of derivatives with respect to θ:

H(θ) =
1
R

dR

dθ

dθ

dt
.

The parametric equations for R and t for an open, matter-dominated universe
are given by

ct = α (sinh θ − θ)

R√
κ
= α (cosh θ − 1) .

Recall that the hyperbolic trigonometric functions are differentiated as

d

dθ
sinh θ = cosh θ ,

d

dθ
cosh θ = sinh θ ,

so the parametric equations can be differentiated to give

dR

dθ
= α

√
κ sinh θ ,

dt

dθ
=

α

c
(cosh θ − 1) =

1
dθ/dt

.
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Then

H(θ) =
[

1√
κα(cosh θ − 1)

] [
α
√
κ sinh θ

] [ c

α(cosh θ − 1)

]

=
c sinh θ

α(cosh θ − 1)2
.

(b) This problem can be attacked by at least three different methods. While you
were expected to use only one, we will show all three.

(i) One way to find ρ is to use

H2 =
8π
3
Gρ− kc2

R2
.

This is usually the safest method to find ρ for a cosmological model, since
the above equation is one of the general Friedmann equations. The equa-
tion requires that the universe be homogeneous and isotropic, but it is
valid for any form of matter. By contrast, the two other methods that will
be shown below are valid only for “matter-dominated” universes (i.e., uni-
verses that are dominated by nonrelativistic matter, for which the pressure
is always negligible). One can rewrite this equation as

8π
3
Gρ = H2 +

kc2

R2
.

Recalling that we described open universes by using κ ≡ −k, this can be
rewritten as

8π
3
Gρ = H2 − κc2

R2
.

Replacing H by the answer in part (a) and R by its parametric equation,
one finds

8π
3
Gρ =

c2 sinh2 θ

α2(cosh θ − 1)4
− κc2

α2κ(cosh θ − 1)2

=
c2

α2(cosh θ − 1)4
[
sinh2 θ − (cosh θ − 1)2

]
.

Now make use of the hypertrigonometric identity

cosh2 θ − sinh2 θ = 1



8.286 QUIZ 1 SOLUTIONS, FALL 2005 p. 5

to simplify:

sinh2 θ − (cosh θ − 1)2 = sinh2 θ − cosh2 θ + 2 cosh θ − 1

= 2(cosh θ − 1) ,

so
8π
3
Gρ =

2c2

α2(cosh θ − 1)3
.

Dividing both sides of the equation by (8π/3)G, one finds

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(ii) The equation for α in the formula sheet,

α =
4π
3

GρR3

κ3/2c2
,

can be solved for ρ to give

ρ =
3
4π

ακ3/2c2

GR3
.

Then substitute the parametric equation for R(θ):

ρ =
3
4π

ακ3/2c2

G

1
α3κ3/2(cosh θ − 1)3

=
3c2

4πGα2(cosh θ − 1)3
.

(iii) ρ can also be found from R̈ = −(4π/3)GρR, as long as we know that the
universe is matter-dominated. (Be careful, however, about applying this
formula in other situations: if the pressure cannot be neglected, then this
equation has to be modified.) To evaluate R̈, again use the chain rule.
Starting with Ṙ,

Ṙ =
dR

dθ

dθ

dt
= α

√
κ sinh θ

c

α(cosh θ − 1)
=

c
√
κ sinh θ

cosh θ − 1
.
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Then

R̈ =
dṘ

dθ

dθ

dt
=

d

dθ

[
c
√
κ sinh θ

cosh θ − 1

]
c

α(cosh θ − 1)

=
c2
√
κ

α(cosh θ − 1)

[
cosh θ

cosh θ − 1
− sinh2 θ

(cosh θ − 1)2

]

=
c2
√
κ

α(cosh θ − 1)3
[
cosh θ(cosh θ − 1)− sinh2 θ

]

=
c2
√
κ

α(cosh θ − 1)3
(1− cosh θ) = − c2

√
κ

α(cosh θ − 1)2
.

So

R̈ = −4π
3
GρR =⇒ − c2

√
κ

α(cosh θ − 1)2
= −4π

3
Gρα

√
κ(cosh θ − 1) ,

and

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(c) The critical mass density satisfies the cosmological evolution equations for k =
0, so

H2 =
8π
3
Gρc .

Then
Ω ≡ ρ

ρc
=

8πGρ

3H2
.

Now replace H by the answer to part (a), and ρ by the answer to part (b):

Ω =
8πG
3

[
3
4π

c2

Gα2(cosh θ − 1)3

] [
α2(cosh θ − 1)4

c2 sinh2 θ

]

= 2
cosh θ − 1
sinh2 θ

= 2
cosh θ − 1
cosh2 θ − 1

= 2
cosh θ − 1

(cosh θ + 1)(cosh θ − 1)
=

2
cosh θ + 1

.

The answer can be written even more compactly, if one wishes, by using a
further hypertrigonometric identity:

Ω =
2

cosh θ + 1
=

1
cosh2 1

2θ
= sech2 1

2
θ .
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(d) The basic formula that determines the physical value of the horizon distance
is given by Eq. (5.7) of the lecture notes:

�p,horizon(t) = R(t)
∫ t

0

c

R(t′)
dt′ .

The complication here is that R is given as a function of θ, rather than t. The
problem is handled, however, by a simple change of integration variables. One
can change the integral over t′ to an integral over θ′, provided that one replaces

dt′ → dt′

dθ′
dθ′ =

α

c
(cosh θ′ − 1)dθ′ .

One must also re-express the limits of integration in terms of θ. So

�p,horizon(θ) = R(θ)
∫ θ

0

c

R(θ′)
dt′

dθ′
dθ′

= α
√
κ(cosh θ − 1)

∫ θ

0

c

α
√
κ(cosh θ′ − 1)

α

c
(cosh θ′ − 1)dθ′ .

= α(cosh θ − 1)
∫ θ

0

dθ′ = αθ(cosh θ − 1) .

(e) The key to this problem is the use of power series expansions. In general, any
sufficiently smooth function f(x) can be expanded about the point x0 by the
series

f(x) = f(x0) +
1
1!
f ′(x0)(x− x0) +

1
2!
f ′′(x0)(x − x0)2

+
1
3!
f ′′′(x0)(x− x0)3 + . . . ,

where the prime is used to denote a derivative. In particular, the exponential,
sinh, and cosh functions can be expanded about θ = 0 by the formulas

eθ = 1 +
θ

1!
+

θ2

2!
+

θ3

3!
+ . . .

sinh θ = θ +
θ3

3!
+

θ5

5!
+

θ5

7!
. . .

cosh θ = 1 +
θ2

2!
+

θ4

4!
+

θ6

6!
+ . . . .
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For this problem, we expand the parametric equations for R(θ) and t(θ), keep-
ing the first nonvanishing term in the power series expansions:

t =
α

c
(sinh θ − θ) =

α

c

(
θ3

3!
+ . . .

)

R = α
√
κ(cosh θ − 1) = α

√
κ

(
θ2

2!
+ . . .

)
.

The first expression can be solved for θ, giving

θ ≈
(
6ct
α

)1/3

,

which can be substituted into the second expression to give

R ≈ 1
2
α
√
κ

(
6ct
α

)2/3

.

The power series expansions for the sinh and cosh are valid whenever the terms
left out are much smaller than the last term kept, which happens when θ � 1.
Given the above relation between θ and t, this condition is equivalent to

t � α

6c
.

Thus,

t∗ ≈ α

6c
, or t∗ ≈ α

c
.

Since there is no precise meaning to the statement that an approximation is
valid, there is no precise value for t∗. It is possible to be more precise by
placing criteria on the size of the first omitted term in the series, and using
these criteria to derive a more precise value for t∗. These expressions for t∗

are always in the form of a dimensionless constant times α/c. This approach
is very good, but it was not required to get full credit for this problem.

(f) From part (c), the expression for Ω is given by

Ω =
2

cosh θ + 1
.
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So,

1− Ω = 1− 2
cosh θ + 1

=
cosh θ − 1
cosh θ + 1

.

Expanding numerator and denominator in power series,

1− Ω ≈
θ2

2! +
θ4

4! + . . .

2 + θ2

2!
+ . . .

.

Keeping only the leading terms,

1−Ω ≈
θ2

2

2
=

1
4
θ2 ,

so

1−Ω ≈ 1
4

(
6ct
α

)2/3

.

This result shows that the deviation of Ω from 1 is amplified with time. This
fact leads to a conundrum called the “flatness problem”, which will be discussed
later in the course.

A common mistake (very minor) was to keep extra terms, especially in the
denominator. Keeping extra terms allows a higher degree of accuracy, so there
is nothing wrong with it. However, one should always be sure to keep all terms
of a given order, since keeping only a subset of terms may or may not increase
the accuracy. In this case, an extra term in the denominator can be rewritten
as a term in the numerator:

θ2

2!

2 + θ2

2!

=
1
4

θ2

1 + θ2

4

=
1
4
θ2

(
1− θ2

4
+ . . .

)

=
1
4
θ2 − 1

16
θ4 + . . . ,

where I used the expansion

1
1 + x

= 1− x+ x2 − x3 + x4 + . . . .

Thus, the extra term in the denominator is equivalent to a term in the numer-
ator of order θ4, but other terms proportional to θ4 have been dropped. So, it
is not worthwhile to keep the 2nd term in the expansion of the denominator.
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PROBLEM 3: TRACING A LIGHT PULSE THROUGH A
RADIATION-DOMINATED UNIVERSE (25 points)

(a) The physical horizon distance is given in general by

�p,horizon = R(t)
∫ tf

0

c

R(t)
dt ,

so in this case

�p,horizon = bt1/2

∫ tf

0

c

bt1/2
dt = 2ctf .

(b) If the source is at the horizon distance, it means that a photon leaving the
source at t = 0 would just be reaching the origin at tf . So, te = 0 .

(c) The coordinate distance between the source and the origin is the coordinate
horizon distance, given by

�c,horizon =
∫ tf

0

c

bt1/2
dt =

2ct1/2
f

b
.

(d) The photon starts at coordinate distance 2c
√
tf/b, and by time t it will have

traveled a coordinate distance∫ t

0

c

bt′1/2
dt′ =

2c
√
t

b

toward the origin. Thus the photon will be at coordinate distance

�c =
2c
b

(√
tf −√

t
)

from the origin, and hence a physical distance

�p(t) = R(t)�c = 2c
(√

t tf − t
)
.

(e) To find the maximum of �p(t), we differentiate it and set the derivative to zero:

d�p

dt
=

(√
tf
t
− 2

)
c ,
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so the maximum occurs when √
tf
tmax

= 2 ,

or

tmax =
1
4
tf .

PROBLEM 4: TRANSVERSE DOPPLER SHIFTS (20 points)

(a) Describing the events in the coordinate system shown, the Xanthu is at rest,
so its clocks run at the same speed as the coordinate system time variable, t.
The emission of the wavecrests of the radio signal are therefore separated by a
time interval equal to the time interval as measured by the source, the Xanthu:

∆t = ∆ts .

Since the Emmerac is moving perpendicular to the path of the radio waves,
at the moment of reception its distance from the Xanthu is at a minimum,
and hence its rate of change is zero. Hence successive wavecrests will travel
the same distance, as long as c∆t � a. Since the wavecrests travel the same
distance, the time separation of their arrival at the Emmerac is ∆t, the same
as the time separation of their emission. The clocks on the Emmerac, however,
and running slowly by a factor of

γ =
1√

1− v2

c2

.

The time interval between wave crests as measured by the receiver, on the
Emmerac, is therefore smaller by a factor of γ,

∆tr =
∆ts
γ

.

Thus, there is a blueshift. The redshift parameter z is defined by

∆tr
∆ts

= 1 + z ,

so
1
γ
= 1 + z ,
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or

z =
1− γ

γ
.

Recall that γ > 1, so z is negative.

(b) Describing this situation in the coordinate system shown, this time the source
on the Xanthu is moving, so the clocks at the source are running slowly. The
time between wavecrests, measured in coordinate time t, is therefore larger by
a factor of γ than ∆ts, the time as measured by the clock on the source:

∆t = γ∆ts .

Since the radio signal is emitted when the Xanthu is at its minimum separa-
tion from the Emmerac, the rate of change of the separation is zero, so each
wavecrest travels the same distance (again assuming that c∆t � a). Since the
Emmerac is at rest, its clocks run at the same speed as the coordinate time t,
and hence the time interval between crests, as measured by the receiver, is

∆tr = ∆t = γ∆ts .

Thus the time interval as measured by the receiver is longer than that measured
by the source, and hence it is a redshift. The redshift parameter z is given by

1 + z =
∆tr
∆ts

= γ ,

so

z = γ − 1 .

(c) The events described in (a) can be made to look a lot like the events described
in (b) by transforming to a frame of reference that is moving to the right at
speed v0 — i.e., by transforming to the rest frame of the Emmerac. In this
frame the Emmerac is of course at rest, and the Xanthu is traveling on the
trajectory

(x=− v0t, y=a, z=0) ,

as in part (b). However, just as the transformation causes the x-component
of the velocity of the Xanthu to change from zero to a negative value, so the
x-component of the velocity of the radio signal will be transformed from zero to
a negative value. Thus in this frame the radio signal will not be traveling along
the y-axis, so the events will not match those described in (b). The situations
described in (a) and (b) are therefore physically distinct (which they must be
if the redshifts are different, as we calculated above).


